NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)
Project Management Directorate

KOHALPUR-NEPALGUNJ 132 KV TRANSMISSION LINE PROJECT

(A Component of Electricity Grid Modernization Project-Additional Financing)

BIDDING DOCUMENT FOR

Procurement of Plant for

Design, Supply, Installation, Testing and Commissioning of 132 kV Double Circuit Transmission Line and Associated Air Insulated Substation at Bakaspur, Janaki Rural Municipality, Banke District (Package A-3)

Single-Stage, Two-Envelope Bidding Procedure

Issued on: 10 August, 2022

Invitation for Bids No.: PMD/EGMPAF/KNTLP-079/80 - 01 OCB No.: PMD/EGMPAF/KNTLP-079/80 - 01

Employer: Nepal Electricity Authority

Country: Nepal

VOLUME – II(A) OF III Employer's Requirement: Transmission Line

August 2022

Kohalpur-Nepalgunj 132 kV Transmission Line Project Project Management Directorate NEA Project Management Directorate Matatirtha, Kathmandu, Nepal Telephone: +977-9851155752

Preface

This Bidding Document for Procurement of Plant – Design, Supply, and Installation has been prepared by Nepal Electricity Authority and is based on the Standard Bidding Document for Procurement of Plant – Design, Supply, and Installation (SBD Plant) issued by the Asian Development Bank dated December 2021.

ADB's SBD Plant has the structure and the provisions of the Master Procurement Document entitled "Procurement of Plant – Design, Supply, and Installation", prepared by multilateral development banks and other public international financial institutions except where ADB-specific considerations have required a change.

Table of Contents - Summary Description

PART I	BIDDING PROCEDURES	
	Section 1 - Instructions to Bidders (ITB) This Section specifies the procedures by Bidders in the preparation and submission of their Bids following a Single-Stage, Two-Envelope bidding procedure. Information is also provided on the submission, opening, and evaluation of bids and on the award of contract.	1-1
	Section 2 - Bid Data Sheet (BDS) This Section consists of provisions that are specific to each procurement and supplement the information or requirements included in Section 1 - Instructions to Bidders.	2-1
	Section 3 - Evaluation and Qualification Criteria (EQC)	3-1
	Section 4 - Bidding Forms (BDF) This Section contains the forms which are to be completed by the Bidder and submitted as part of its Bid.	4-1
	Section 5 - Eligible Countries (ELC) This Section contains the list of eligible countries.	5-1
PART II	REQUIREMENTS	
	Section 6 - Employer's Requirements (ERQ)	6-1
PART III	CONDITIONS OF CONTRACT AND CONTRACT FORM	S
	Section 7 - General Conditions of Contract (GCC) This Section contains the general clauses to be applied in all contracts. These Conditions are subject to the variations and additions set out in Section 8 (Special Conditions of Contract).	7-1
	Section 8 - Special Conditions of Contract (SCC) This Section contains provisions that are specific to each contract and that modify or supplement the GCC. Whenever there is a conflict, the provisions herein shall prevail over those in the GCC. The clause number of the SCC is the corresponding clause number of the GCC.	8-1
	Section 9 - Contract Forms (COF) This Section contains forms, which, once completed, will form part of the Contract. The forms for Performance Security and Advance Payment Security, when required, shall only be completed by the successful Bidder after contract award.	9-1

Turnkey Bidding Document Kohalpur Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 1 Project Specific Requirement (PSR)

CHAPTER 1

PROJECT SPECIFIC REQUIREMENT

1. General Information and Scope

Kohalpur-Nepalgunj 132 kV Transmission Line Project consist of construction of 132 kV double circuit transmission line Loop-In Loop-Out (LILO) through four circuit tower from Kohalpur to Nepalgunj. Volume II-A of bidding documents covers the technical requirement for construction of approximately 10km long, 132 kV transmission line starting from tapping tower located at Bankatuwa, Baijanath Rural Municipality-5 of Banke District and ending at Nepalgunj substation located at Bakaspur Village, Janaki Rural Municipality -5 of Banke District. The proposed 132 kV Transmission line traverses through plain landscape of Banke district of Nepal. The variations of altitudes of the proposed 132 kV transmission line ranges from approximately 146.13 m to 158.1 m above MSL.

Design, engineering, drawing and construction of works shall satisfy the general technical requirements specified in the Specification or **implied as per relevant IEC/IEEE/IS/ASTM/British standard codes (B S Codes)/ equivalent International Standards**.

1.1 Scope

1.1.1 The following 132 kV transmission line associated with Project Management Directorate for Execution of 132 kV D/C Kohalpur-Nepalgunj Transmission Line are included in the scope of the contractor for this package: -

Line Length (approx.)

Kohalpur-Nepalgunj 132 kV D/C Transmission Line

- 10 km

- 1.1.2 This Specification covers the following scope of works:
 - (i) Check survey; tower spotting, optimization of tower locations, soil resistivity measurement, geo-technical investigation.
 - (ii) Fabrication and supply of all type 132 kV transmission line towers, including River crossing towers (wherever applicable) as per Employer design/drawings including fasteners, step bolts, hangers, D-shackles etc.
 - (iii) All types of tower accessories like phase plate, circuit plate (where ever applicable), number plate, danger plate, anti-climbing device, Bird guard (where ever applicable).
 - (iv) Supply of Conductor, Insulator, OPGW, Hardware Fittings and Conductor & OPGW Accessories.
 - (v) Classification of foundation for different type of tower, design drawings of foundation casting of foundation (including special foundation locations, viz. pile/well foundation locations) for tower footings as per approved foundations drawing
 - (vi) Erection of towers, tack welding of bolts and nuts including supply and application of zinc rich primer & two coats of enamel paint, tower earthing, fixing of insulator strings, stringing of conductors and earth wires along with all necessary line accessories.
 - (vii) Painting of towers & supply and erection of span markers, obstruction lights (wherever applicable) for aviation requirements (as required).
 - (viii) Testing and commissioning of the erected transmission lines and

Kohalpur Nepalgunj 132 kV TLP

- (ix) Other items not specifically mentioned in this Specification and / or BPS but are required for the successful commissioning of the transmission line, unless specifically excluded in the Specification.
- 1.1.2.1 Employer shall provide structural drawings, shop drawings (if required) & Bill of Materials of all type of transmission line towers and its extensions, river crossing towers/special towers as required to the Successful Contractor after placement of award, in sequence, suiting the project requirement. However, design drawings for all type of foundations for the towers shall be designed by the Contractor and submit to Employer for approval.
- 1.1.2.2 (a) The provisional quantities of fabricated & galvanized steel parts as per specifications required for towers and other items are given in appropriate Schedule of Bid Price Schedule (BPS). However, the work shall be executed as per approved construction drawings.
 - (b) The various items of work are described very briefly in the appropriate Bid Price Schedule (BPS). The various items of the BPS shall be read in conjunction with the corresponding sections in the Technical Specifications including amendments and, additions, if any. The Bidder's quoted rates shall be based on the description of activities in the BPS as well as other necessary operations required to complete the works detailed in these Technical Specifications.
 - (c) The Unit rates quoted shall include minor details which are obviously and fairly intended, and which may not have been included in these documents but are essential for the satisfactory completion of the various works.
 - (d) The unit rate quoted shall be inclusive of all plant equipment, men, material skilled and unskilled labor etc. essential for satisfactory completion of various works.
 - (e) All measurements for payment shall be in S.I. units, lengths shall be measured in meters corrected to two decimal places. Areas shall be computed in square meters & volume in cubic meters rounded off to two decimals.
- 1.1.2.3 The Bidder shall submit his offer taking into consideration that the tower designs/drawings shall be developed/ provided by Employer, but and foundation design and drawing shall be developed by the bidder themselves and design rights will be strictly reserved with Employer. Bidder shall quote the unit rates for various items of towers and foundations as per units mentioned in appropriate schedule of BPS. However, payment of these items identified in the schedule of prices shall be made as follows:

A)	TOWER			
i)	Supply items	On supply of respective complete tower		
ii)	Erection items	On erection of respective complete tower		
В)	Foundation items:	On completion of respective foundation in all respect		

The payment to be made for towers/foundations shall be worked out based on the unit rates and approved Bill of Materials (BOM) for towers and quantities/volumes as per approved tower foundation drawings.

- 1.1.3 This specification also includes the supply of Conductor, Insulators, OPGW, hardware fittings and all type of accessories for conductor and OPGW as detailed in the specification. Bidders shall clearly indicate in their offer, the sources from where they propose to procure these materials in appropriate Schedule of BPS. The technical description of these items is given in relevant section of this Volume of the bidding documents.
- 1.1.4 All the raw materials such as steel, zinc for galvanizing, reinforcement steel, cement, coarse and fine aggregates for tower foundation, coke and salt for tower earthing etc. are included in the Contractor's scope of supply.

Kohalpur Nepalgunj 132 kV TLP

1.1.5 Bidder shall also indicate in the offer, the sources from where they propose to procure the fasteners, anti-theft fasteners, step bolts, hangers, D-shackles etc., tower accessories, aviation signal (if required) etc.

1.1.6 **Stringing**

- a) The entire stringing work of conductor and earth wire shall be carried out by tension stringing technique. The bidder shall indicate in their offer, the sets of tension stringing equipment he is having in his possession and the sets of stringing equipment he would deploy exclusively for each package which under no circumstance shall be less than the number and capacity requirement indicated in Qualifying Requirements for Bidder. However, the Bidder having requisite experience has freedom to use helicopter for stringing. The Bidder intending to use helicopter shall furnish detailed description of the procedure, type & number of helicopter & accessories etc., to be deployed for stringing operation.
- b) In hilly terrain and thick forest or area with site constraints, where deployment of tension stringing machine is not possible, manual stringing may be adopted after getting approval of Employer's site Engineer. The contractor shall deploy appropriate tools / equipment's / machinery to ensure that the stringing operation is carried out without causing damage to conductor / earth wire and conductor / earth wire is installed at the prescribed sag-tension as per the approved stringing charts.
- 1.1.7 The casting of special pile/well foundations (if applicable) wherever required shall be in the scope of the Contractor. The design shall be developed by the contractor and submit to employer for approval. If the bidder does not have necessary experience, some other agencies meeting the qualifying requirements may be engaged by the bidder for the casting of pile/well foundations. The Unit rate shall be derived as per pro rata basis with existing items/ Foundations.

1.2 Details of Transmission Line Routes and Terrain

The check survey shall be carried out using Total stations, DGPS, etc. along the approved route alignment. As an alternative, the Contractor may also use ALTM (Airborne Laser Terrain Modeling) techniques of equal or better accuracy for the survey.

Bidders may however visit the line route to acquaint themselves with terrain conditions and associated details of the proposed transmission lines. For this purpose, they are requested to contact to the project office.

1.3 Location Details and Terminal Points

- 132 kV D/C Kohalpur-Nepalgunj Transmission Line shall emanate from Tower no. 19 of Kohalpur-Mahendranagar 132 kV D/C transmission line located at Bankatuwa, Baijanath Rural Municipality-5 of Banke District and terminate at Nepalgunj substation located at Bakaspur Village, Janaki Rural Municipality -5 of Banke District.
- ii. The Contractor shall have to construct the 132 kV D/C transmission line in four circuit towers with dead end towers at one end (near Suspension Tower no. 19) to the dead end tower of to be constructed Nepalgunj Substation. Stringing shall also be carried out from dead end tower to terminal arrangements/terminal points (Gantry Points of respective Station).

1.4 Access to the Line and Right of Way

Right of way (RoW) and way leave clearance shall be arranged by the Owner in accordance with work schedules. The responsibility of the owner shall be limited to securing the RoW, compensation of land acquisition and permanent structure. All other responsibilities shall be of the Contractor as mentioned in the respective Chapters. Owner will secure way leave and Right of way in the Forest area. However, the details of RoW i.e., plot number and area of the land required for construction of tower foundation and plot number and area of the land

Kohalpur Nepalguni 132 kV TLP

within 9 m on the either side of the center of the transmission line, shall be prepared and submitted by the Contractor.

2.0 Transmission towers and Line data

2.1 General Description of the Tower

- 2.1.1 The transmission towers are of self-supporting hot dip galvanized lattice steel type, designed to carry the line conductors with necessary insulators, earth wires and all fittings under all loading conditions. Outline diagram of single circuit and double circuit towers are enclosed with the Specification.
- 2.1.2 The tower shall be fully galvanized using mild steel or/and high tensile steel sections as specified in relevant clause in section-IV. Bolts and nuts with spring washer are to be used for connections.
- 2.1.3 The towers are of the following types:
 - A) 132 kV Four Circuit (QA, QB, QC, QD &DD)

2.2 Classification of Towers

2.2.1 The towers for 132 kV Lines are classified as given below:-

Type of Tower	Deviation Limit	Typical Use
QA	0 deg2 deg.	i) To be used as tangent tower.
QB	2 deg - 15 deg	i) Angle towers with tension insulator string. ii) Also to be used for anti-cascading condition.
QC	15 deg-30 deg	i) Angle tower with tension insulator string. ii) Also to be used for anti-cascading condition.
QD	30 deg-60 deg	 i) Angle tower with tension insulator string. ii) For river crossing anchoring with longer wind span & 0 deg. Deviation on crossing span side and 0 deg. To 30 deg. Deviation on other side.
D/QD		i) Dead end with 0 deg. To 15 deg. Deviation both on line side and sub-station side (slack span)

Note: The above towers can also be used for longer span with smaller angle of deviations without infringement of ground clearance.

2.2.2 Extensions

- 2.2.2.1 Towers were designed so as to be suitable for adding 3M, 6M and 9M body extensions and 1.5M, 3M, 4.5M, 6M, 7.5M and 9M leg extensions for maintaining adequate ground clearances without reducing the specified factor of safety in any manner.
- 2.2.2.2 The towers have been designed for providing unequal leg extensions as given in the BPS. The details of unequal leg extensions provided in the design shall be indicated to the contractor during execution stage, so that proper optimization of benching / revetment requirement can be done accordingly by the contractor. The towers are designed for unequal leg extensions of 1.5M, 3M, 4.5M, 6M, 7.5M and 9M generally with 3M maximum leg differential and in specific cases with 6m maximum leg differential. In exceptional

Kanjon (A)

Kohalpur Nepalguni 132 kV TLP

situations where difference in leg differential does not suit the standard unequal leg extension provisions on the tower mentioned above, then suitable chimney extension shall be provided.

- 2.2.2.3 All above extension provisions to towers and foundations shall be treated as part of normal towers and foundations only.
- 2.2.2.4 The leg extensions, unequal leg extensions, chimney extensions and / or a combination of these suitable for a tower location shall be selected on the basis of techno-economics.

2.3 Span and clearances

2.3.1 Normal Span

The normal ruling span of the line is 350m.

2.3.2 Wind Span

The wind span is the sum of the two half spans adjacent to the support under consideration. For normal horizontal spans this equals to normal ruling span.

2.3.3 Weight span

The weight span is the horizontal distance between the lowest points of the conductors on the two spans adjacent to the tower. For spotting of structures, the span limits given in Table below for 132 KV lines shall prevail.

TOWER TYPE	NORMAL CONDITION		BROKENWIRE CONDITION		
	MAX (m)	MIN (m)	MAX (m)	MIN (m)	
QA	500	0	300	0	
QB	600	-600	360	(-) 360	
QC	600	-600	360	(-) 360	
D/DD	600	-1000	360	(-) 600	

2.3.4 In case at certain locations where actual spotting spans exceed the design spans and crossarms and certain members of towers are required to be modified/ reinforced, in that case drawings for the modified/reinforced towers will be supplied to the Contractor as per requirement.

2.4 Electrical Clearances

2.4.1 Ground Clearance

The minimum ground clearance from the bottom conductor shall not be less than 7000 mm for 132KV lines at the maximum sag conditions i.e at 80° C and still air.

- a) An allowance of 150mm shall be provided to account for errors in stringing.
- b) Conductor creep shall be compensated by over tensioning the conductor at a temperature of 26°C lower than the stringing temperature for ACSR "BEAR" conductor.

2.4.2 Line Data for 132 kV transmission line:

A. Electrical System Data:

а	Nominal Voltage	kV	132
b	Maximum system voltage	kV	145
С	BIL(Impulse)	kV (Peak)	650

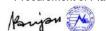
buish M

Kohalpur Nepalgunj 132 kV TLP

d	Power frequency withstand voltage		
	(Wet)	kV (rms)	275

B. Details of Line Materials

A. Conductor and shield wire


Λ.	Conductor and siner	WIIC		
SI. N	o. Description	Unit	Shield wire	Conductor
1.	Name/Type		OPGW	ACSR Bea
2.	Size	mm	48 single mode OPGW	30/3.35 +7/3.0 stee
3.	Configuration		single to run on top of the towers	Vertical
C. In	sulator Strings			
SI. No.	Particulars		Tension String	Suspension String
1.	Type of Insulator	Compos	site long rod	
2.	E&M Strength of the insulator string in Single	KN	120	70
	Double		240	140
3.	Rated lightning impulse withstand voltage, kV		650	650
4.	Rated power frequen withstand voltage, kV a. Dry		357	

Note:

b. Wet

- For double suspension and tension string the hardware shall have at least 3 time higher strength than the insulator.
- The above parameters are applicable for installations up to an altitude of 1000m above mean sea level. For altitude exceeding 1000m above MSL, necessary altitude correction factor shall be applicable as per IEC or part thereof. Bidders shall furnish the suitable value after taking altitude correction factor in Chapter 7: Technical Data Sheet (Guaranteed Technical Particulars) separately for each items as applicable.
- The insulation and RIV levels of the equipment's shall be as per values given in the respective chapter of the equipment's.

D. Insulator String Hardware (As may be applicable)

325

Kohalpur Nepalgunj 132 kV TLP

- a) Anchor Shackle
- b) Chain Link
- c) Ball Clevis / Socket clevis / Clevis Eye
- d) Arcing horns / Arcing horn holding plate
- e) Yoke plate
- f) Free center type/Armor grip suspension clamp for suspension strings.
- g) Compression type dead end clamp.
- h) Grading ring.
- i) Sag adjuster.
- i) Balancing weight

E. Accessories for Conductor & OPGW (As may be applicable)

- a) Preformed Armor rods
- b) Mid Span compression joint
- c) Repair Sleeves
- d) Flexible copper bonds
- e) Vibration dampers
- f) Suspension assembly for OPGW.
- g) Tension assembly for OPGW.

2.5 CONDITIONS OF SERVICE

All plant and equipment supplied under the contract shall be entirely suitable for the climatic conditions prevailing at site. Climate varies from moderately hot and humid tropical climate to cold climate.

Between June and August low-lying areas are subject to flooding. All structures shall be designed with the seismic factor of 0.36g.

Maximum ambient shade temperature46 degree CMinimum ambient shade temperature5.4 degree CAnnual average temperature31 degree CMaximum wind velocity47 m/sec

Rainfall 1,385 mm/annum
Monsoon season June-August
Relative humidity, maximum 100 %
Minimum 10 %

Altitude 158.1 MSL (Max.)
Atmospheric pollution Light to medium Isokeraunic level (thunderstorm days) 60

The information in this Clause is given solely for the general assistance to Bidders. No responsibility for it will be accepted, nor will any claim based on this Clause be considered. The Bidder is advised to survey the sites covered under this Bid to acquaint him with site conditions.

2.6 Variation in Quantities of Work

- a) The provisional quantities required are mentioned in the respective schedule of prices. Final quantities shall be determined after completion and approval of the detailed route survey and check survey.
- b) The final quantities of towers, line materials and foundations shall be confirmed by the NEA based on the requirement of quantities of various items furnished by the Contractor after completion of check survey. Hence it will the responsibility of the Contractor to intimate the exact requirements of all towers, line materials and foundations required for the line at the earliest after the survey. NEA will order the final quantities at the unit rates quoted in the bid.

Kanjan (N)

Kohalpur Nepalguni 132 kV TLP

- c) NEA reserves the right to increase or decrease up to 15% (fifteen percent only) of Contract value. The quantities of individual items may very up to any extent after the final route plans and route profiles of the lines covered in the package are finalized.
- d) The Contractor shall agree to make no claim for anticipated profits or for alleged losses because of any difference between the quantities actually furnished and installed and the estimated quantities as indicated in these Bidding Documents.
- e) In the course of check survey, tower staking; installation of special tower (other than the tower type specified in the schedule) or modification on the cross-arm may be found necessary. In such case the Contractor shall conduct design related works without any additional cost to the Employer. Payment for the special tower and the modified cross-arm will be made at the unit rate of the tower material (weight) used. Unit rate will be derived as described above on the basis of DDM type tower.

2.7 Expected life cycle

Life expectancy of the following items shall be as given below:

Long rod insulator: min. 20 years
Optical terminal equipment: min. 10 years

The Contractor shall submit certificate from independent laboratory for the life expectancy above material equipment or the manufacturer shall provide any other reliable document to prove the life expectancy.

2.8 Additional responsibilities of the Contractor

The Contractor shall take care of the following during execution of the works under the Contract.

2.8.1 The Contractor shall be responsible to select and verify the route, mode of transportation and make all necessary arrangement with the appropriate authorities for the transportation of the equipment. The dimension of the equipment shall be such that when packed for transportation, it will comply with the requirements of loading and clearance restrictions for the selected route. It shall be the responsibility of the Contractor to coordinate the arrangement for transportation of the Transformers for all the stages from the manufacturer's work to site.

The conditions of roads, capacity of bridges, culverts etc. in the route shall also be assessed by the bidders. The scope of any necessary modification/ extension/ improvement to existing road, bridges, culverts etc. shall be included in the scope of the bidder. The Contractor shall carry out the route survey along with the transporter and submit the detail proposal and methodology for transportation of Tower parts for approval of Employer within three months from the date of award

- 2.8.2 The Contractor shall also be responsible for the overall co-ordination with internal/external agencies; project management, training of Owner's manpower, loading, unloading, handling, moving to final destination for successful erection, testing and commissioning of the Transmission Line.
- 2.8.3 Design of Transmission line and its associated electrical & mechanical auxiliaries systems includes preparation of tower spotting, foundation layout, tower protection works, earthing layout, erection key diagrams, electrical and physical clearance diagrams, design calculations for earthing and lightening protection system (including Direct Stroke Lighting Protection), control and protection schematics, civil designs (as applicable) and drawings and other relevant drawings & documents required for engineering of all facilities for the transmission line to be provided under this Contract, are covered under the scope of the Contractor.

Kohalpur Nepalgunj 132 kV TLP

2.8.4 Any other items not specifically mentioned in the specification but which are required for erection, testing and commissioning and satisfactory operation of the transmission line are deemed to be included in the scope of the specification unless specifically excluded.

Employer has standardized its technical specification for various equipment's and works for different voltage levels. Items, which are not applicable for the scope of this package as per schedule of quantities described in Schedules of Rates and Prices, the technical specification for such items should not be referred to.

2.9 Specific Requirement

- a. The bidders are advised to visit the site and acquaint themselves with the topography, infrastructure, route alignment, road heads, and access/approach roads etc.
- b. The bidder shall be responsible for safety of human and equipment during the working. It will be the responsibility of the Contractor to co-ordinate and obtain Electrical Inspector's clearance before commissioning. Any additional items, modification due to observation of such statutory authorities shall be provided by the Contractor at no extra cost to the owner.
- c. The Contractor shall arrange all T&P for erection, testing & commissioning of the system at his own cost. Further, all consumables, wastage and damages shall be to the account of Contractor.

Procurement of Plant

Kohalpur-Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 2 GENERAL INFORMATION AND SCOPE FOR 132 kV DOUBLE CIRCUIT TRANSMISSION LINE

GENERAL INFORMATION AND SCOPE

Salient Features of the Project

Kohalpur Nepalgunj 132 kV Transmission Line Project consist of construction of 132 kV double circuit transmission line Loop-In Loop-Out (LILO) through four circuit tower from Kohalpur to Nepalgunj. Volume II-A of bidding documents covers the technical requirement for construction of approximately 10km long, 132 kV transmission line starting from tapping tower located at Bankatuwa, Baijanath Rural Municipality-5 of Banke District and ending at Nepalgunj substation located at Bakaspur Village, Janaki Rural Municipality-5 of Banke District. The proposed 132 kV Transmission line traverses through plain landscape of Banke district of Nepal. The variations of altitudes of the proposed 132 kV transmission line ranges from approximately 146.13 m to 158.1 m above MSL.

Intent of the Specification:

This part of the specification is intended to cover the design, manufacture, engineering, inspection and testing at Bidder's work(s), packaging, forwarding to site, unloading, erection, testing, commissioning, performance testing and handing over of 132 kV Double Circuit Transmission Line from Kohalpur to Nepalgunj and from Nepalgunj to Kohalpur through Four Circuit Towers with all associated ancillaries and auxiliaries.

This specification shall be read and construed in conjunction with the drawings and annexure to determine the scope of work and terminal points. The quantities shown on drawings and annexure are indicative. Any variation arising during detailed engineering stage will be taken into account by the Bidder without any extra cost and time to the Employer.

Bidder shall be responsible for providing all material, equipment and services, specified or otherwise which are required to complete the scope and fulfill the intent of ensuring efficiency, operability, maintainability and the reliability of the complete work covered under this specification. It is not the intent to specify completely herein, all aspects of design and construction of equipment. Nevertheless, the equipment shall conform in all respects to high standards of engineering, design and workmanship and shall be capable of performing continuous commercial operation, in a manner acceptable to Employer, who will interpret the meaning of the specification, drawings, requirements of operation, maintenance redundancy etc. and shall have a right to reject or accept any work or material which in his assessment is not complete to meet the requirements of this specification and/or applicable International standards mentioned elsewhere in the specification.

Bidder is requested to carefully examine and understand the specifications and seek clarifications, if required, to ensure that they have understood the specifications. In the event of conflict between the requirements of any two clauses of this specification or requirements of different codes/ standards, the more stringent requirement shall govern, unless confirmed otherwise by the Employer in writing before the award of this contract, based on a written request from the bidder for such a clarification. However, if the bidder feels that, in his opinion, certain features brought out in his offer are superior to what has been specified, these may be highlighted separately.

Scope of Work

The scope of works covering design, engineering, procurement, inspection & testing at manufacturer's works, supply, insurance, receipt at site, storage and preservation at site, site transportation, construction, erection, commissioning, trial operation, handing over to Employer, guarantee all equipment, spares and material, catalogues, drawings, documents and services including lubricants, transformer oil, consumables for the proposed 132 kV Double Circuit Transmission Line from Kohalpur to Nepalgunj inclusive of all mechanical, electrical and civil, structural & architectural works on basis of single point responsibility.

Single-Stage: Two-Envelope

The scope of work shall include but not limited to the following:

- Detailed survey and check survey including route alignment and profiling, right of way identification
 and clearance, tower spotting, optimization of tower locations, soil resistivity measurement,
 geotechnical investigation and check survey.
- Complete engineering services for the project including basic & detailed engineering, design philosophy, operation philosophy, submission of technical parameters, characteristic curves, capability curves, etc of equipment and material for Employer's approval.
- Prototype testing of towers at manufacturing plant of the Contractor.
- Any study through which the capacity and rating of equipment offered shall be proved for the main & auxiliary system on analysis of site location and attitude.
- Submission of manuals, engineering & construction drawings, design basis reports, optimization study reports, design calculations, quality assurance plans, testing procedures, operation and maintenance manuals, commissioning procedures, etc.
- Obtaining of any consents, licenses and approvals from relevant statutory authorities required as
 per applicable law in Nepal, other than those obtained by the Employer. The scope of Bidder also
 covers extending necessary assistance wherever logically required to enable Employer to obtain
 the requisite approval.
- Quality assurance of all work related to scope of work of the Bidder.
- Submission of schedule of work from zero date to handing over for complete plant to Employer
 and equipment in the form of chart, 'S'-curve; write up, visual chart etc for Employer's approval.
 Submission of monthly progress reports, photographs, graphs etc for engineering, supply,
 construction and commissioning for all major works with suggestions and plans for making up back
 log if any for review of Employer. To attend meetings, review, discussion etc for resolving all
 issues.
- Submission of shipping schedule of equipment and material from country of origin up to receipt at site for off shore supply and ex-works to site for on-shore supply matching with schedule of work for approval of Employer.
- Manufacture, fabrication, quality control, shop testing of equipments and material after approval of required technical data and drawings by Employer. To furnish notice to Employer for inspection.
- Packing, forwarding, shipment and transportation (including port handling and custom clearance)
 from the manufacturer's works to site. Comprehensive marine/ transit-cum-storage-cum-erection
 insurance coverage of all equipment from Nepal Border/ ex-works to project site till the equipment
 supplied is taken over by Employer. Preservation of all equipment starting from transportation till
 completion of testing and commissioning.
- Hiring of a suitable storing area which shall be approved by the Employer,
- Receipt at site, unloading, movement to proper storage, carriage to storage area/ interim/ final foundation location, security, preservation and conservation of equipment at the site.
- Erection and construction including supply of construction material and labour complete for structural and including all temporary enabling works, cabling, testing, start-up, successful trial operation and performance guarantee testing of the plant as indicated under the specifications and bidding documents.
- Performance Guarantee of the plant.
- Supply of spares parts.
- Supply any other equipment including special tools & tackles, for operation, capital maintenance.

Single-Stage: Two-Envelope

- Supply of all manuals covering erection and commissioning, performance testing, operation, preservation, and capital maintenance including supply of as-built drawings and services required for satisfactory completion of the project.
- Supply of all construction consumables, e.g., welding electrodes, cleaning agents, diesel oil as well
 as materials required for temporary supports, scaffolding, storage tanks, illumination as necessary.
- Deployment of all skilled and unskilled manpower required for erection, commissioning, testing, etc, supervision of erection, commissioning, testing etc for services to be rendered.
- Deployment of all erection tools & tackles adequate number and capacity of cranes, construction
 machinery, transportation vehicles, and all other implements in adequate number, capacity and
 size. Any other tools, tackles and resources required to complete the contract with required quality
 and within the schedule.
- · Training of Employer's personnel as specified.
- Arrangement of construction power and construction water at site.
- Any other activity not listed above but required for safe and trouble free operation of the works shall be deemed to have been included in the Bidder's scope.

1.1.1 Major Equipment and Works

The following list of the major plant items and systems shall be included in the Bidder's scope of work. This list is not exhaustive and is without prejudice to the more fundamental responsibility of the Bidder for completeness of 132 kV Double Circuit Transmission Line from Kohalpur to Nepalgunj.

- a) Conductors and Accessories
 - Line Conductor (ACSR BEAR) and accessories
 - Optical fibre ground wire (OPGW) and accessories
 - Optical fibre terminal equipment (OLTE) at Nepalguni Substation
 - Insulator, hardware Fittings and other accessories
- b) Tower and Tower Accessories
 - All types of transmission line towers (total 4 types QA, QB, QC and QD including bolts, nuts and washers, hangers, D-shackles etc.
 - All types of tower accessories like phase plate, circuit plate, number plate, danger plate, anti climbing device, bird guard, aviation signals, painting of towers etc.

Foundations

- Classification of foundations for different soil conditions for different type of towers and casting of foundation for tower footings including stub setting.
- c) Grounding of each towers.
- d) Other items not specified above but required to complete the transmission line as per technical specifications, Bid Forms & Price Schedules.

Exclusions

None

Terminal points

The Bidder's scope of work shall terminate at the points as shown on the table below. These interconnection points represent the physical boundary points of the Bidder's scope of works. They do not necessarily define the operational responsibilities between the Bidder and the third parties.

System	Terminal Points
Termination of Line conductor Nepalgunj Substation	132 kV Gantry of the line bay within Nepalgunj Substation. Connection with the Gantry including supply of string insulators hard ware and other accessories are included in the scope of work of this specification.
Termination of OPGW	Optical line terminal equipment (OLTE) shall be supplied and installed within communication room inside control building of Nepalgunj substation. Connection of OLTE with Multiplexer (MUX) of Nepalgunj substation is included in the scope of this specification.

Additional responsibilities of the contractor

The Contractor shall take care of the following during execution of the works under the contract.

1.1.2 Existing Fences

Where it is necessary to operate equipment through existing fences, the Contractor shall install suitable temporary gates. The temporary gates shall be constructed of materials and to standards equal to those of the existing fence. Before cutting the fences for the installation of temporary gates, the Contractor shall install adequate braces and additional posts, if necessary, on each side of the opening and shall fully anchor the fence so that all wires will maintain their original tension after opening is cut. Except when equipment is passing, such gates shall be kept closed. After completion of the work, the fence shall be restored as nearly as practicable to its original condition. Deviation from the above requirement will be permitted only where the Contractor furnishes advanced written approval from the landowner or landowners for a different method of operation.

Where it is necessary for the Contractor to remove or to alter portions of existing fences to permit construction, temporary fence protection shall be provided at all times during construction and upon completion of the construction, the fence shall be rebuilt in its original or relocated position.

The cost of all work herein described shall be borne by the Contractor. Should the contractor refuse or neglect to perform any work required by the above provisions within twenty-four hours after notification by the Employer to do so, the Employer reserves the right to perform the work and the cost thereof will be deducted from payment due to the Contractor.

1.1.3 Transmission, Telegraph and Telephone Lines:

The Contractor shall make all necessary or required provisions concerning any interference with the operation or maintenance of traffic or service of any transmission, telegraph or telephone lines existing on the date of receiving bids, caused by the work of the Contractor under this Contract, all in a manner satisfactory to the Employers or operators and to the Employer.

The Contractor shall notify the Employers of such facilities of any damage, which is his responsibility and shall promptly settle proper claims. Pending settlement of such claims by the Contractor, an appropriate sum as determined by the Employer may be withheld from payments due to the Contractor until the matter is settled.

The cost of providing and maintaining all necessary or required watchmen, signals, guards and temporary structures, of making any necessary repairs, replacements, or similar operations and all or any other costs required by this Sub-Clause shall be borne by the Contractor.

1.1.4 Operation and maintenance

The Contractor shall provide at least one operating and maintenance expert at the site for a continuous period of Six (6) months or any extension required thereof because of serious breakdown or any extensions of warranty period, from the commencement of the Defect Liability Period to train the local staff on the operation of various equipment.

1.1.5 Commissioning and pre-commissioning

The Contractor shall provide sufficient, properly qualified personnel; shall supply and make available all raw materials, utilities, lubricants, chemicals, catalysts, other materials and facilities; and shall perform all work and services of whatsoever nature required to properly carry out Pre-commissioning, Commissioning and Guarantee Test all in accordance with the provisions of the Contract Agreement.

1.1.6 Other Responsibilities

- a) The Contractor shall be responsible for selecting and constructing appropriate communication means necessary for the executing of the project at his own expense. If required, the Employer will assist the Contractor in obtaining licences/ permits from the concerned government agencies.
- b) Gasoline, oil and lubricants for construction equipment and vehicles are available in Nepal and the Contractor will not be permitted to import such products for use on the work.
- c) The Contractor shall be responsible for the arrangement of water supply for drinking and construction purposes at his own cost.
- d) The Contractor shall be responsible for the arrangement of electricity supply for construction and any other purposes at his own cost.
- e) The Employer requires to get approval of cutting trees falling in RoW of the transmission line. For this the Contractor shall be responsible for enumeration of trees i.e. marking of trees at breast height, calculation of number and types of trees and its total volume to be removed in close coordination with the concerned forest department. Cost of all such activities is deemed to be included in the bid proposal. The Employer shall however assist in all such activities and getting approval from the concerned agencies.

Required Completion Schedule

The scope under Volume – II-A of the bidding document includes following component of Kohalpur Nepalgunj 132 kV transmission line project:

- a. Design, manufacturing, supply, construction, installation, testing and commissioning of 132 kV double circuits Transmission Line from Kohalpur to Nepalgunj.
- b. All works under the scope shall be completed within Thirty (30) months from the effective date of the contract.

Supply of all material and equipments shall be done by the contractor according to the approved supply schedule and this should be the responsibility of the contractor to submit and get approval of the supply schedule from the employer.

Kohalpur Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 3 PRELIMINARY WORKS

Kohalpur Nepalgunj 132 kV TLP

TABLE OF CONTENTS

3	PRELIMINARY WORKS	2
3.1	Check Survey and Staking	2
3.2	Detail Survey works	
3.3	Preparation of Land parcel data for Tower and RoW lands	
3.4	Soil Test	7
3.5	Measurement of Ground Resistance	13
3.6	Ground Handling for crossing of 132 kV lines	13

Kohalpur Nepalgunj 132 kV TLP

3 PRELIMINARY WORKS

3.1 Check Survey and Staking

qualified surveyor. Not less than 15 days prior to commencement of work, the Contractor shall submit qualification of surveyors, work program and list of surveying equipment for the entire section of the proposed transmission Line and obtain approval of the Employer. Latest portable hand GPS shall also be used for determination/ verification of coordinates. The GPS used during detail/ check survey shall be the property of NEA after completion of said works. The Employer has studied several alternatives for the route alignment of the said transmission line and selected a route alignment. The Contractor shall be responsible for undertaking check survey of that selected route alignment.

The proposed 132 kV Transmission double circuit line with ACSR BEAR Conductor is passing through plain landscape of Banke district of Nepal. The variations of altitudes of the proposed 132 kV transmission line ranges from approximately 146.13 m to 158.1 m above MSL. It is envisaged to adopt towers suitable for systems with 750 kV peak BIL (for balance length) for the proposed 132 kV Transmission line.

The Contractor along with the Employer shall examine the angle points and fix them within 60 days from Contract signing date. Immediately after that the Contractor shall carryout check survey and prepare Strip plans and longitudinal profile sections of that section at scales horizontal 1:2,000 and a vertical scale of 1:200 or 1:400 as appropriate.

The Contractor shall study the plan and profile and locate the intermediate tower location. The contractor shall fix the type of towers for the complete alignment. For the proposed 132 kV Transmission line, the contractor shall submit the following drawings:

- (i) Three (3) copies of profile drawings.
- (ii) Two (2) sets of sag templates showing the sag in still air at maximum temperature of the conductor along with sag calculations, the ground clearance line and the line showing the sag for the entire length of the transmission line.
- (iii) Two (2) sets of sag templates showing the sag in still air, 0°C temperature of the conductor along with sag calculations, ground clearance line and the line showing the sag for transmission line.
- (iv) Tower schedule indicating tower coordinates (X,Y,Z) tower number, tower type, insulator type, tower type, line angle, span length, elevation of tower spot, leg extensions, dampers, etc.

Construction of transmission line should be completed within the set mile stone date.

The quantities given in the Price Schedule are provisional only and the Contractor shall finalise the quantities after the tower and foundation selection. Any delay in tower selection works will not be held as a valid reason for lack of progress in manufacture and construction and the Contractor will be expected to commence manufacture and construct the line even though the final quantities are not known until a later stage.

The Contractor shall perform all necessary survey work which consists of determination, checking and lay out the accurate centre of line and elevation of all the reference points, based on the key map and plan and profile drawings. Furthermore, the Contractor shall check the minimum clearance of conductor crossing the existing highways, major waterways, power and telecommunication lines, etc.

The tower to be erected shall comprise of Basic body and leg extensions as provided in the Price Schedule, if for some reason the leg extensions are not sufficient or require some modification in the body extension part, the Contractor shall make necessary changes with the prior approval of the Employer. The Contractor shall not be entitled to claim for any materials furnished or work performed in this respect.

Kohalpur Nepalgunj 132 kV TLP

During check survey, the Contractor shall assess and design works required to be undertaken for the protection of the foundations.

The check survey work shall be performed by qualified and experienced personnel and supervised by Project team.

Following points shall also be considered during tower staking and preparation of tower schedule;

a) Road Crossing

At all important road crossings, the tower shall be fitted with double suspension or tension insulator strings depending on the type of tower but the ground clearance at the roads under maximum conductor design temperature and in still air shall be such that even with conductor broken in adjacent span, ground clearance of the conductor from the road surfaces will not be less than the values specified at Schedule A-3, Section-11 for 132 KV lines. At all national highways crossing span will not be more than as basic span specified in schedule A.4 (Support Types and Design Spans) item no. 2 in section –11.

b) River Crossings

In case of Major River crossings which are more than 500 meter, towers shall be of suspension type and the anchor towers on either side of the main river crossing shall be DD type tower. Clearance required by navigation authority shall be provided. For non-navigable river, clearance shall be reckoned with respect to highest flood level (HFL). In case of river crossing with a span up to 500 meter normal tower spotting procedure shall be followed to achieve minimum clearance as given in schedule A-3, Section-11 (Minimum Clearance).

c) Power Line Crossings

Where this line is to cross over another line of the same voltage or lower voltage, tower with suitable extensions (if necessary) shall be used. Provisions to prevent the possibility of its coming into contact with other overhead lines shall be made in accordance with the directions of the Employer. All the works related to the above proposal shall be deemed to be included in the scope of the Contractor except if modifications are required to line below, in which case, the conditions to be agreed upon. The minimum clearance while crossing the lines up to 132 kV shall be 3500 mm as given in schedule A-3, Section-11 (Minimum Clearance).

For power line crossings of voltage level of 132 kV and above, an angle towers shall be provided on either side of DA type tower which can be temporary dead end condition with proper guying.

d) Telecommunication Line Crossings

The angle of crossing shall be as near to 90 degreess as possible. However, deviation to the extent of 30 degrees may be permitted under exceptionally difficult situations.

When the angle of crossing has to be below 60 degrees, the matter will be referred to the authority in charge of the telecommunication System. On a request from the Contractor, the permission of the telecommunication authority may be obtained by the Employer.

Also, in the crossing span, power line support will be as near the telecommunication line as possible, to obtain increased vertical clearance between the wires.

Payment:

Payment for the contract item, **Check Survey and Staking**, will be made at the unit price bid (per km) based on horizontal distance measurement. Therefore, in the schedule the unit bid price shall include full

Kohalpur Nepalguni 132 kV TLP

compensation for all costs incurred in furnishing all materials, equipment and labor and other operations related to the scope of work of survey as specified before.

3.2 Detail Survey works

The Employer has studied several alternatives for the route alignment of the said transmission line and selected a route alignment. For some practical reason such as change in topography due to construction of some new object in the line route, to avoid heavy afforestation or to avoid abolishment of houses under the line in some section of the line route minor modifications may require. Therefore, the Contractor along with the Employer shall examine the angle points and fix them within 60 days from Contract signing date. As route selection has been confirmed few years ago, there is probability of new constructions performed on the route. Moreover, some portion of previously selected route may subject to rerouting demanded by both technical and site based reasons. The heading **Detail Survey works** deems to meet this requirement for few portions of the route. The Contractor shall be responsible for undertaking detailed survey of few portion of rerouting work.

The contractor shall carryout detailed survey of some part of the transmission line route, where relocation of angle towers may be required. The provision of detail survey has been made and payment shall be done in accordance to BoQ.

The Contractor shall perform all necessary survey work which consists of determination, checking and lay out the accurate centre of line and elevation of all the reference points, based on the key map and plan and profile drawings. Furthermore, the Contractor shall check the minimum clearance of conductor crossing the existing highways, major waterways, power and telecommunication lines, etc.

Payment:

Payment for the contract item, **Detail Survey works**, will be made at the unit price bid (per km) based on horizontal distance measurement. Therefore, in the schedule the unit bid price shall include full compensation for all costs incurred in furnishing all materials, equipment and labor and other operations related to the scope of work of survey as specified before.

3.3 Preparation of Land parcel data for Tower and RoW lands

The work "Preparation of Land parcel data for Tower and RoW lands" consists of;

a) Land Schedule preparation work

The land schedule of the given line route will be prepared by the Contractor. The land parcel preparation work shall be done in close coordination with district "Survey office" and district "Land Revenue office" as Land Parcel data will be approved by employer only after verification from these district level offices and work will be considered mature for payment. The Employer shall assist the Contractor to the extent possible. The Contractor will identify the exact land parcel number and area of the land required for the tower foundations and protection works to be acquired for land acquisition purpose.

b) Routes, Right-of-Way and Access data preparation work

The land schedule of the given *line route* will be prepared by the Contractor. The Employer shall assist the Contractor to the extent possible. The Contractor will identify the exact land parcel number and area of the land required for the RoW for compensation purpose. The Contractor shall identify exact land parcel number and area of such land falling within RoW (9 m X 9 m) for compensation purpose and rectify all the errors if arises to the satisfaction of the concerned land owners and the Employer.

Procurement of Plant

Kohalpur Nepalguni 132 kV TLP

Later, the necessary right of way for the lines to enable the Contractor to carry out stringing and erection will be obtained by the Employer. But the Contractor will not be reimbursed for waiting time caused by delay in obtaining right of way unless he has established on site as per instruction of the Employer in advance of obtaining right of way. Where partial right of way only is granted, the Contractor shall program his work accordingly.

The Contractor shall make all necessary arrangements for the access roads with the land owners before going onto private land, but if any difficulty should arise, the Contractor shall promptly inform the Employer. Such arrangements shall be at least one month in advance of the desired access date to allow time to clear any difficulties. The Employer shall be kept informed of all negotiations and successful arrangements.

At any early stage of the Contract the Contractor shall arrange all proposed points of access and after the approval of the Employer shall prepare maps for submission to the Employer for the settlement of way leave arrangements. No other access shall be used without the prior consent of the Employer.

It shall be clearly understood by the Contractor that the cost of construction of access roads and delivery of construction material to erection points shall be deemed to be included in the bid price and the Contractor shall have no claim whatsoever to extra payment for construction and maintenance of access as may be required.

Further the contractor should understand clearly that the following are his responsibility;

I. Clearing

The Contractor shall be responsible for clearance of the foundation site. Clearing shall include removal and disposal of all tress, bushes, down timber, tree roots, debris, indicated structures and other obstructions from the areas to be occupied by permanent works of the contract, and as indicated on the drawings, specified herein and as directed by the Employer at tower foundation site and the access. The Contractor shall be responsible for removal of creeping vines and all vegetation on all existing towers from the base to the top. The cost of this work shall be included in the Bid price. The Contractor shall also be responsible for trees enumeration and removal of trees during foundation excavation, erection and stringing works at its own cost. However, compensation of such trees shall be borne by the Employer. The Employer shall be responsible for the clearance of the right of way for the transmission line as regards houses.

II. Protection

The Contractor shall be responsible for prevention of damage to structures and other objects which are not included in the clearing work. No objects of any kind outside the indicated limits of the work shall be removed or damaged. Existing utilities which are not specifically included in the work shall be protected by the Contractor. The Contractor shall be responsible for employment of safe methods of demolition and clearing.

III. Notices

Before construction commences, the Contractor shall give to the Employer not less than seven days' notice that support positions have been pegged and are available for inspection.

Before the Contractor commences work he shall obtain from the Employer a way leave schedule giving details of any special requirements of the occupiers or Employer concerned.

When the Contractor is about to carry out erection of the conductors along or across power, telegraph or telephone lines, or public roads he shall give the requisite notice to the appropriate authorities of the date and time which he proposes to perform the work and shall send a duplicate copy of each notice to the Employer. The Contractor shall construct trestles for such line or road crossings. No separate payment shall be made for such works.

Kohalpur Nepalguni 132 kV TLP

The Contractor shall at all times during the execution of the Works ensure compliance with all such reasonable requirements of the occupier or Employer as are brought to the Contractor's notice by the Employer.

IV. Damage

The Contractor shall take all reasonable precautions to avoid damage to land, property, roads, crops, fences, walls, gates, etc., and shall ensure that the work is adequately supervised so that unavoidable damage is reduced to the minimum. The Contractor will be liable for all damage arising by or in consequence of the works except unavoidable damage to crops and shall pay compensation or make good at the option of the Employer. The Contractor shall remove all soil and surplus material after erection.

The Contractor will be responsible for payment necessary for agreed passage over private roads, where arrangements have been made by the Contractor.

The Contractor will be responsible for notifying the Employer of all instances of damage to crops which in the opinion of the Contractor are unavoidable. In the event of such notification not being received by the Employer, Employer may at his discretion refuse to consider any claim by the Contractor for compensation resulting there from.

V. Crossing of obstacles

The Contractor shall make all necessary arrangement and take all necessary precautions where the route crosses buildings, power lines, orchards, gardens or other obstacles or ground over which erection cannot be carried out in the normal manner.

Where the local authorities or other public undertaking affected deem it necessary to make provision for the protection of their employees or property or of the public, or for the assistance of traffic, the cost of such provision shall be borne by the Contractor.

The provision of special scaffolding for purposes of effecting crossings of the route over roads, railways, rivers, telegraph and telephone lines or other similar obstructions as the Employer and/ or the Contractor may consider necessary shall be the Contractor's responsibility and all cost of such special crossings shall be borne by the Contractor.

Adequate provision shall be made by the Contractor to prevent the straying or damage to livestock during the execution of the Contract Works and until permanent reinstatement of fences, walls, hedges, gates and the like is completed, the Contractor shall be held responsible for any loss or damage due to failure to comply with the above requirements.

Payment:

Payment of identification of land parcel number and their areas shall be done as per quoted bid price but no separate payment shall be made for clearing, cutting and special scaffolding arrangements and access road. Therefore, the Contractor shall include all the cost in the unit bid for construction of foundation, stringing or tower erection.

50 % of the quoted sum shall be paid after submission and rectification of land parcel number and area of land required for tower foundations and protection (acquisition purpose) and remaining 50 % of the sum shall be paid after submission and rectification of land parcel number and areas falling under RoW for (compensation purpose).

Kohalpur Nepalguni 132 kV TLP

3.4 Soil Test

3.4.1 Scope

This specification covers all the work required for geotechnical investigation and preparation of a detailed report. The work shall include mobilization of necessary equipment, providing necessary engineering supervisors and technical personnel skilled and unskilled labor and other as required, to carry out field investigations and test, laboratory tests and analysis and interpretation of data and results, preparation of a detailed soil report including recommendations and providing technical services as and when called for by the Employer. The investigation method shall be as described herein or any other methods approved by Employer giving the same information as needed to ensure that soil parameters are sufficient for reliable foundation design. The location for the geo-technical investigation shall be approved by the employer.

3.4.2 Codes and standards

All work shall be carried out strictly in accordance with the Technical Specifications unless otherwise approved by the Employer in writing. Where not specified, the latest-edition of one or more of the following codes of practice or any other applicable code shall be followed.

SP 32(Part-2) : Compendium of Indian Standards on soil engineering Laboratory (Field Testing of

soils for Civil Engineering Purpose.

BS 1377 : Methods of Test for Soils for Civil Engineering Purposes

BS 1924 : Methods of Test for Stabilized Soils

BS 5930 : Code of Practice for Site Investigations

BS 6031 : Code of Practice for Earthworks
CP 2004 : Code of Practice for Foundations

CBIP Manual on Transmission Line

Codes equivalent to these in American/ DIN Standards can also be used.

3.4.3 Purpose

The purpose, in brief, of the proposed geotechnical investigation, is to ascertain the type of sub-strata such as soil, rock etc., their characteristics and their suitability for the structures proposed to be built and to decide on the choice of the type of foundation to be adopted for the type and magnitude of envisaged loading. All the tests that are considered necessary in the opinion of the Employer for this purpose shall be conducted. Any additional tests/ works, change in the number and type of specified tests revision in the diameter, depth of bore holes, samples to be collected etc. shall be carried out as directed by the Employer.

3.4.4 Calibration of equipment

The Contractor shall ensure that all the equipment/ instruments are properly calibrated, at the start of the work, to reflect actual values. If so demanded by the Employer, the Contractor shall have the instruments tested at an approved laboratory at his cost and the test reports shall be submitted to the Employer. If the Employer desires to witness such tests, the Contractor shall arrange for the same at his own cost.

3.4.5 Field work

a) General

Kohalpur Nepalguni 132 kV TLP

It is essential that personnel on this work of geotechnical investigation and laboratory testing should have the appropriate experience. The entire investigation shall be supervised by a suitably qualified and experienced engineer or engineering geologist. All field and laboratory work shall be executed by experienced technicians.

The Contractor shall have on site all required survey instruments as determined by the Employer to carry out the work accurately according to Specification and Drawings. All the specified locations for boreholes and field tests shall be set out at site by the Contractor. At each location of bore-hole, and other field tests the Contractor shall establish the ground level prior to commencing of the boring operation. The ground level shall be related to an established bench mark.

b) Method of boring

Boring in soil

In soil strata, boring may be carried out by auger or percussion tools or by method approved by the Employer or Employer's representative. Bentonite slurry or mud circulation process can also be used if permitted. However, for those boreholes, where water samples are to be collected for chemical analysis, bentonite slurry or mud circulation method shall not be used or shall be restricted as directed by the Employer or Employer's representative. The diameter of the boreholes, unless stated otherwise shall be such as to permit collection of undisturbed samples of 90mm diameter.

Where necessary boreholes shall be cased and whenever a borehole is cased, the bottom of the casing shall always be maintained within 150mm of the bottom of the borehole. The casing shall never be in advance of the bottom of borehole during undisturbed sampling or standard penetration tests.

Borehole depth

All the boreholes shall be sunk to a depth of 6m at field.

c) Sampling

Sequence of sampling

The general sequence of sampling adopted shall be such as to obtain alternatively undisturbed samples at every 1.5 meter intervals and at every significant change of stratum. Undisturbed sample wherever possible, shall be collected at every 3.0 meters interval and at every identifiable change of soil formation. Likewise disturbed samples, as obtained in the standard split spoon, shall be collected by conducting the standard penetration test at every 3.0 meters interval and at the significant change of soil stratum.

> Undisturbed sampling in boreholes

Samplers used for collecting undisturbed samples in soils shall meet IS/ BS and American Standards requirements and shall be appropriate to the type of soil to be sampled. Undisturbed soil samples collected shall be 90mm in diameter and 450mm in length so as to enable laboratory testing.

The area ratio of samplers shall be within the permissible limit and shall not exceed 25 percent for samples of 90mm diameter. The cutting edge of the cutting shoe of the sample shall be tapered at an angle not exceeding 20 degrees and inside clearance ratio shall generally be limited to 0.5 to 1.5 percent. Samples with lower clearance ratio shall be used in soft strata and these with higher clearance ratio shall be used in stiff strata. The cutting edge or shoe of sampler shall be free from rust, pitting, burring or any other defect. The sampler shall be fitted with ball check valve at the upper end.

For clays other than very soft clays open drive samplers are permissible whereas in very soft clays and in sandy soils piston samplers with core catcher device or other approved samplers shall only be used. The use of oil inside the samplers in operation shall be limited to minimum practicable.

Kohalpur Nepalguni 132 kV TLP

Before sampling operation, the Contractor shall clean the bottom of borehole very carefully and every care shall be taken to avoid disturbance of material to be sampled. For sampling the sampler shall be lowered to the bottom of borehole without impact and pressed into the soil in a single continuous movement at a sufficiently slow rate to permit the check valve to pass the water in the tube with creating excess back pressure. In firm material, and whenever approved by the Employer the sampler may be driven into the soil; but the sampler shall never be pushed or driven to its full length. After penetration to the required depth, the sampler shall be free from the soil by being rotated by one full turn and then shall be withdrawn.

The sample shall not be removed from the tube but shall be trimmed back from the ends of the tube and the space filled with molten microcrystalline wax, the tube capped with metal or plastic cap and sealed with adhesive tape.

Undisturbed soil samples from trial pits and other sources

The Contractor may be required to collect undisturbed soil samples from trial pits excavations or other sources. these samples may be core samples or block samples and may be obtained with a special orientation as indicated by the Employer core samples shall generally be obtained by jacking a thin walled open drive sampler of around 100mm diameter into the stratum. The sample tubes shall be driven if approved by the Employer's representative. The sample tubes shall be held steady during jacking/ driving and a suitable frame shall be used for guiding inclined samplers.

Disturbed soil samples

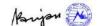
The material from the cutting shoe of the thin walled sampler and from the split spoon sampler of the standard penetration test can be treated as disturbed sample, but will not be paid for separately. All disturbed samples collected shall be placed without delay in an air-tight jar of not less than 0.4kg nominal size and each sample shall fill the jar as far as possible.

Larger disturbed samples may be required to be collected from trial pits or excavations. Each of such samples should be at least 10 kg. Such samples shall be sealed into heavy duty polythene bags immediately on collection.

> Water samples

Contractor shall take water samples from boreholes, whenever directed by the Employer, before addition of water to the hole. If this is not possible prior to collection the water level in the borehole shall be lowered by about 0.5m, water allowed to rise by seepage through walls of bore hole and then water sample collected.

No water sample shall be taken when bentonite slurry or mud has been circulated in the borehole. The method of sampling shall be such as to ensure that the sample is not contaminated by rain water, surface water etc. The quantity of sample to be collected is about 1 liter and shall be stored only in approved airtight, clean container. Water samples should be tested as soon as possible after collection.


Numbering of samples

The Contractor shall assign a reference number to each soil and water sample taken from the borehole. this number shall be unique for that borehole and shall be in order of depth below ground level.

Labeling of samples

All samples shall be clearly labeled indicating job number, borehole number sample number, date of sampling, brief description of samples, type of sample, elevation of sample etc. and in case of undisturbed samples, the top and bottom of samples shall also be clearly labeled. Each such label shall be pasted on the container and shall also be included in the container.

Transporting and storing of samples

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Procurement of Plant

Single-Stage: Two-Envelope

Kohalpur Nepalguni 132 kV TLP

The Contractor shall store properly all the samples at the site till they are transported to his laboratory for testing. All rock cores and samplers with undisturbed soil samples shall be placed in order of their occurrence in strong wooden boxes suitably partitioned and provided with hinged wooden covers, so that the samples are not damaged during transit by impact or improper handling. To minimize disturbance during shipment samplers containing undisturbed soil samples shall be packed with wood dust or similar other resilient material and as directed by the Employer or Employer's representative

The Contractor shall transport all samples to his testing laboratory as quickly as possible and test the samples. Samples shall be transported by air, if the stipulated completion period so warrants. All unused and excess samples after testing should be retained and safely stored by Contractor till three months after the end of submission of the report.

d) Specific observations during boring

The observation to be made by the Contractor during boring shall include but not be limited to the following:

Sequence and thickness of different strata

Visual description of each stratum shall be provided.

Ground water table

The depth at which ground water is struck during boring shall be carefully noted and the depth of water table shall be ascertained subsequently in the complete borehole by daily observing the depth for the next six to seven days. Depth of ground water shall also be observed in wells, if wells exist in the vicinity.

"Loss" or "Make" of drilling fluid

The "Loss" or "Make" of drilling fluid if observed during the boring shall be noted and brought to the attention of the Employer's representative. Attempts shall be made to detect joints, fissures, artisan conditions etc.

Presence of lime, mica. etc.

The soil and rock samples shall be examined for presence of lime, mica etc. and shall be recorded, if any. The Contractors rate for boring shall be deemed to include these and all other relevant observations.

e) Submission of field logs

The Contractor shall submit or mail to the Employer as directed, two copies of the preliminary log of each borehole as soon as the borehole is completed.

f) Field tests

Standard penetration test (SPT)

Unless directed otherwise by the Employer or Employer's representative, the Contractor shall carry out standard penetration test at 1.0 meter intervals and at every noticeable change of soil formation and as per the procedure in IS/BS or ANSI. The finest test shall generally begin at 1.0 m depth unless an undisturbed sample is collected at that depth, and further test at 2.0 m, 3.0 m, 4.0 m, 5.0 m and 6.0 m depths shall be done.

For conducting the test, the bottom of borehole shall be cleaned properly and the spoon shall be properly and centrally seated in position in the borehole. The derive weight assembly shall consist of a driving head of 65 kg weight with 75 cm free fall. It shall be ensured that the energy of falling weight is not reduced by friction between the drive weight and guides or between rope and winch drum. Standard connecting rods shall be used.

Kohalpur Nepalguni 132 kV TLP

The test shall be stopped (When the test is not conducted in weathered/ Soft rock) when the total blow count including seating drive reaches 120. The corresponding penetration shall be noted. If the total penetration is more than the seating penetration of 15 cm, a breakup of blow count for 15 cm seating penetration and for the remaining portion of penetration shall also be given

g) Excavation of trial pits

The Contractor shall excavate trial pits to the depth of 3.0 meters. Relevant tests specified in these pits shall also be carried out. Whether specified or not, in every trial pit, including those excavated for loading tests, tests by "Pocket Penetrometer" and by "Picket" shall be generously carried out at different depths in different strata. Picket test shall be conducted in non-cohesive strata. In this test a wooden picket of dimensions 5cm x 5cm in cross section, with a sharp point and about 70 cm long shall be pushed perpendicular to the surface of soil by a force of about 70 kg and the penetration of the picket shall be recorded. The test by pocket penetrometer shall be done in soils with cohesive touch and in weathered rock.

h) Backfilling of boreholes and pits

The Contractor shall backfill the boreholes and pits. The borehole shall be back filled by bentonite/ mud-cement grout. The cement and bentonite/ mud for the grout shall be in the ratio 1 to cement and bentonite for the grout shall be in the ratio 1 to 1 by weight, and shall be made into a slurry with no more water than is necessary for placing the slurry in the borehole. If there is standing water in the borehole, grout shall be placed by Tremie. The pit shall be backfilled with proper ramming using the excavated material.

3.4.6 Laboratory tests

a) General

All the laboratory testing shall be performed by qualified and experienced personnel, familiar with and having access to equipment and facilities for the accurate determination of data necessary for requirements under this specification.

b) Independent laboratory

The Employer reserves the right to have the samples tested in an independent laboratory. If the Contractor is directed to get the samples tested in an independent laboratory, he shall be paid only the actual cost of such tests.

c) Program for testing

The Employer or Employer's representative will direct Contractor on samples to be tested and on type of test to be conducted. The Employer or Employer's representative is not bound to furnish this information at the beginning of the investigation itself but shall instruct the Contractor at appropriate time during the course of the investigation. In case of clayed soil tri-axial compression test on undisturbed soil samples shall be carried out.

d) Standards for testing

The Contractor shall test the samples as per the relevant BS, ANSI or directed by the Employer.

e) Access to the laboratory

The Employer shall have the right of access to Contractor's Laboratory or other Laboratory where tests have been arranged to be carried out during the progress of this investigation.

f) Submission test data and results

The Contractor shall submit when demanded by the Employer preliminary copy of the data and the computed results tests he has conducted. However, the final report shall contain all the experimental data and the results as stated below in Article 3.2.7.

Kohalpur Nepalgunj 132 kV TLP

3.4.7 Formal report

a) General

The Contractor shall submit his report in two separate volumes. Volume I shall be the main body of the report containing geological history of the Site summarized test data, observations, conclusions and recommendations. Volume II shall be in the form of appendix and shall contain actual field and laboratory observations, calculations of test results, supporting calculations for the recommendations made etc. Initially, the Contractor shall submit these volumes to the Employer in a draft form.

b) Route plan

A route plan showing location of all boreholes, trail pits, etc. shall be presented in the report.

c) Bore logs

A true cross-section of all boreholes, trial pits showing thickness, position and classification of each soil stratum found between top surface and bottom of the hole shall be submitted. The various tests conducted and recovered from every soil and rock stratum shall be clearly against that stratum.

A record in full of every trial pit or incomplete boring with appropriate explanations shall be reported in the same manner as the completed pits or boreholes.

d) Ground water

All available data on ground water conditions shall be presented separately and shall be identified by borehole number and sampling dates and timing of observations, showing clearly the number of observation made in a particular safe.

e) Test results

The recommendations shall be based on observations and test results and shall encompass theoretical as well practical considerations for foundations for the types of structures envisaged. The Contractor shall acquaint himself with the type of structures proposed.

Recommendations shall include but not be limited to the following:

- A brief geological description including that of faults, folds, etc. if any on the basis of published literature.
- Seismic history including a brief description of previous earthquakes, giving time, period, magnitude, ground acceleration, epicenter, damage done etc.
- Recommended type of foundations and safe/ allowable Cardinalin capacities.
- Possibility and extent of scour in river beds.
- Recommendation for class of concrete to be used for foundations vis-a-vis deleterious effect of ground water/soil chemicals concrete and steel.
- Earth pressure coefficients that may be adopted.
- Any other relevant information and data.
- Technical services as and when called by the employer.

Payment

Payment for the contract item, Soil Test, will be made at the unit price bid. Therefore, in the schedule the unit bid price shall include full compensation for all costs incurred in furnishing all materials, equipment, technical services, labor and other operations related to the scope of work of soil test as specified before.

Procurement of Plant

Kohalpur Nepalguni 132 kV TLP

3.5 Measurement of Ground Resistance

The Contractor is required to perform ground resistance test at every support/ tower locations. Method of measurement, tools and instruments shall be submitted to the Employer for approval.

The measurement of ground resistance shall be performed at every meter depth from ground surface to the specified depth or to maximum depth of sub-soil tests except where ground resistance value of 10 ohms or less is obtained at any adjacent levels, no further measurement is required.

The Contractor may use drilling rod(s) of sub-soil test equipment during performing the sub-soil test as earth electrodes for measuring the ground resistance.

The Contractor shall recommend the type of earth electrodes in accordance with the results of ground resistance obtained. Selection of earth electrode type shall be suitable for each structure and its particular site conditions. The data obtained shall be prepared in an approved form and submitted to the Employer.

Payment

Payment for the contract item measurement of ground resistance will be made at the unit price bid. Therefore in the schedule the unit bid price shall include full compensation for all cost incurred in furnishing all equipment and labor related to "Measurement of Ground Resistance".

3.6 Ground Handling for crossing of 132 kV lines

This is provisional item. The designated 132 kV transmission line have no high voltage line crossing of 132 kV till to date. Incase during stringing, any crossings of 132 kV transmission lines or dedicated feeder is demanded in field, this work should be performed.

The need of use of ERS or any other suitable alternatives shall be proposed by the contractor to the satisfaction of the employer for approval to avoid prolonged shut down of 132 kV transmission lines or dedicated feeder lines during stringing works under the scope of the contract. The work should be carried out only after approval of plan proposed by contractor.

Payment: Ground handling cost during shutdown shall be decided upon submission of the detail methodology and procedures to be adopted by the contractor and payment shall be made to the contractor upon completion of approved work as per approved procedure. **The price quoted for ground handling in the price bid is only provisional**. The contractor shall provide full details of the cost to be incurred to the satisfaction of the employer. Employer shall decide the amount to be paid in this regard and shall be final and binding to the contractor but in no case the quoted price shall be exceeded.

Kohalpur Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 4 TRANSMISSION LINE TOWER

Kohalpur Nepalgunj 132 kV TLP

TABLE OF CONTENTS

4	TRANSMISSION LINE TOWER	3
4.1	General	3
4.2	Design Spans	3
4.3	Conductor and OPGW Clearances	3
4.4	Extensions	4
4.5	Tower Design	5
4.6	Loads on Towers	7
4.7	Details of Structural Steel	10
4.8	Slenderness Ratio L/R	11
4.9	Miscellaneous Design Criteria	12
4.10	Construction of Tower Steel work	13
4.11	Tower Earthing	15
4.12	Tower Accessories	16
4.13	Final Design and Design Drawing	17
4.14	Testing of Towers	19
4.15	Material Quality Control	21
4.16	Process Flow Chart for Fabrication of Towers	21
4.17	Packing	22
4.18	Standards	22

Kohalpur Nepalguni 132 kV TLP

4 TRANSMISSION LINE TOWER

4.1 General

The scope of work comprises of Design, prototype testing, Supply and erection of steel lattice Four-circuit towers (QB and QC type) and design of 132 kV four-circuit towers of (QA and QD type) and double circuit Dead End Towers (DDE-type) will be provided for 10 km long 132 kV transmission line from Kohalpur to Nepalgunj. The towers shall be self-supporting, hot dip galvanized, latticed steel type & designed to carry the line conductors with necessary insulators, shield wires and all fittings under all loading conditions. Outline diagram of Four-circuit towers are enclosed with the Specification. Please refer to drawing No DWG011.

4.2 Design Spans

The design shall provide for basic, wind and weight spans given in Schedule A.4. of Chapter 11.

The term basic span shall mean the horizontal distance between centers of the adjacent towers on ground level.

The term wind span shall mean half the sum of adjacent horizontal spans lengths supported on any one support.

The term weight span shall mean the equivalent length of the weight of conductor supported at any one support at maximum temperature in still air.

4.3 Conductor and OPGW Clearances

For all supports the clearances from conductors, arc horns, jumper loops and all live metal to the structure or grounded steel work shall not be less than those specified in the table below.

Sr. No	Type of insulator string	Swing in deg.	Min. Live metal Clearance in mm
1	1 Single suspension insulator string	Nil	2130
		15	1980
		30	1830
		45	1675
		60	-
2	Jumper (without Pilot String)	Nil	2130
		10	2130
		20	1675
		30	-

Single-Stage: Two-Envelope

Kohalpur Nepalguni 132 kV TLP

The length of angle structure cross-arm shall be such as to ensure that the distances between conductors from straight-line structures are maintained in plain normal conductors.

The minimum clearances between the live conductors and other objects at maximum sag condition of the conductor shall not be less than those specified in schedule A.3 of section -11.

Where uplift condition occurs at tension tower positions, details should be provided to show that the above requirements are not infringed.

For 132 kV towers carrying deviation angles up to 30° cross arms shall generally be so proportioned that proper live metal clearances are maintained under all conditions without the use of pilot suspension insulators. Pilot suspension insulator strings must be used on tension structures with deviation angle of 30° or more. However, for tension structures with deviation angle below 30°, suspension insulator strings should be used on locations where sufficient clearance of the jumpers is not available with the structure without any additional cost to the Employer.

The minimum ground clearances from the bottom conductor at maximum sag condition shall not be less than the clearances specified in Schedule A.3 of Section 11.

However, to achieve the above clearance during operation the height of tower shall be increased in the following manner:

- a) An allowance of 500 mm shall be provided to account for errors in stringing.
- b) Long term conductor creep shall be compensated by over tensioning the conductor at temperature of 21°C lower than the stringing temperature for ACSR BEAR.

The phase distance:

The minimum distance between testing point at insulators shall set as per standard practice at IEC or any other standards. Allowance shall be made for increasing or decreasing the length and varying the arrangement of all terminal tower cross arms to enable span connections to be made in any desire phase sequence.

Where obstructions of other types are met requiring special clearance, the clearance shall be approved by the Employer. If any factors likely to cause infringement of clearance become apparent the Contractor shall inform the Employer immediately.

Clearance between phases:

The distance between conductors belonging to different circuits shall be 1.20 times the distance belonging to the same circuit. However, the distance shall not be less than 3.0 m.

Clearances with OPGW:

The sag of the OPGW for the basic span at the severest condition, shall not be more than 80% of the phase conductors.

4.4 Extensions

The Double Circuit towers for ACSR BEAR Conductor shall be designed so as to be suitable for adding - 3M, -1.5M, -/+0M, +1.5M, +3M, +4.5M, +6M, +7.5M and +9M extensions for maintaining adequate ground clearances without reducing the factor of safety (actual stress/ allowable stress) available for the members of tested extensions in any manner. Reference drawings for leg extension arrangement are enclosed in the Bid Document.

Kohalpur Nepalguni 132 kV TLP

The special tower with deviation angle more than 60° or Leg extension greater than +9 meter and up to +18 meter shall be treated as DF Tower. Though tower spotting by survey report shows no need of +18 meter DF tower, though, due to some changes in the route in the long course of time after initial survey, check survey report may demand +18 meter DF tower. So the cost of such tower in case of need shall be as per cost offered by successful bidder. (or spotting should be such that to avoid +18 m leg extension at any case)

The towers shall be designed for providing unequal extensions with maximum difference between the shortest and the longest leg of 3M for DA tower and 6M for DB, DC and DD/ DDES towers. These unequal extensions to be provided in the design shall be used during tower spotting/ execution stage to optimize the benching/ revetment requirement.

All above basic body/ extension provisions to towers shall be treated as part of basic tower only.

4.5 Tower Design

4.5.1 Design Requirement

Towers shall be self-supporting type of vertical configuration and are designated as suspension towers, tension towers, transposition towers and special (DF) towers. The requirement of transposition and special towers shall be assessed after finalization of the detailed survey, profiles etc. The proposed Double circuit suspension towers shall be provided with single suspension string single conductor and jumper pilot string and double suspension string of EMS rating as specified in relevant section of this document.

The details of Insulators, ACSR BEAR Conductor and OPGW Earth wire are as specified in the Section 11 Schedules A.9, Schedule A.10 & Schedule A.11. The minimum ground clearance and height of bottom conductor, wind spans & weight span are as indicated in the Section 11 Schedule A.3 & Schedule A.4.

In case of certain locations where actual spotting spans exceed the design spans, cross arms and certain members of towers are required to be modified/ reinforced, the bidder shall submit the proposal to Employer for approval for reinforcement.

4.5.2 Base Width of the Towers (Not Applicable)

In view of the difficult hilly/ ridges terrain conditions, forest reaches, restricted ROW of 18 m, narrow based towers are conceived for this Transmission Line so as to minimize the benching, rock cutting/ revetment works. The base width of narrow based basic towers shall be fixed on techno-economic considerations as well to expedite the execution of project. The recommended base widths for different Towers (i.e. Centre to Centre distance between tower legs at the point of connection between legs & chimney for normal ±0 m body extension shall be as follows:

Types of Tower	Minimum Values (meter)	Maximum Values (meter)
QA	3.0	4.5
QB	4.5	5.5
QC	5.5	6.5
DD/ DDES	6.5	7

Kohalpur Nepalgunj 132 kV TLP

DF/ Special Tower	7	9.0
· ·		

As substantial portion of Transmission Line traverses through hilly area, the maximum and minimum weight span under Normal Condition and Broken Wire Condition for Angle Towers shall be based as per CBIP Publication No 323 Tower Manual.

4.5.3 Sag Tension

The sag tension calculation for conductor and earth wire shall be made in accordance with the relevant provision of IS 5613 (Part-2/Sec-I) -1985 of the following load conditions. Appropriate drag co-efficient and gust response factors (Corresponding to Terrain Cat-II) shall be considered for accounting the wind pressure.

Ref. Cl. No. 10.3 of IS802)					
Condition I (Every day Temperature + 100% Wind load)	Condition	Temperature	Wind Load	Ice Load	
100% Willia load)	0	32°	100% (full)	Nil	
Condition II (Minimum Temperature + 36% Wind load)	Condition	Temperature	Wind Load	Ice Load	
33.3	0	0°	36% (full)	Nil	

In addition, all the standard conditions for Sag Tension calculation as per IS 802 and CBIP Manual shall be considered as per good Industries practice.

4.5.4 Preliminary design

The preliminary design of the towers including suspension and tension tower design shall be prepared at the start of the project which shall be sound in engineering and economical in design. The preliminary design shall consist of all the necessary item/ components required to complete the tower to be erected. This preliminary design shall be presented to the Employer with the line diagram and design calculation for approval. Necessary changes, as per Employer shall be incorporated to the design by the Contractor if necessary, without additional financial implication, and should not affect the period of completion of the project.

The line diagram which is approved by the Employer shall be released for detailed design and for preparation of shop drawing.

4.5.5 Wind Load

Kohalpur Nepalgunj 132 kV TLP

The Transmission line is traversing in wind Zone: 4 as per IS 802 and the corresponding wind velocity is 47 m/s. This wind speed is applicable up to height of 10 m at every day temperature of 32°C corresponding to 3 second peak gust wind. As this transmission line is traversing & encountering hilly/ ridges terrain, higher value of terrain roughness factor, K2 =1.08, corresponding to terrain Cat-I shall be adopted. However the Gust Response factors corresponding to Terrain –II for conductors, Earth wire, Tower and Insulator shall be adopted for accounting the wind pressure.

The above base wind speeds shall be applicable for Four circuit towers. The corresponding Design Wind Pressure on towers, conductors and insulators shall be obtained from the relation $P_d = 0.6V^2$ as follows:

Reliability Level
 1 (50 yrs return period)

■ Risk Co-efficient (k₁) 1.00

■ Terrain Roughness Co-efficient (K₂) 1.08

 (But Gust factors corresponding to terrain category –II shall be considered for conductors/ earth wire, Tower and Insulator for arriving the wind load)

Design Wind Speed (V_d)
 47 m /sec

4.5.6 Seismic Consideration

The design of towers and foundations shall be checked for seismic forces under no wind conditions and coefficient of seismic load as per IS: 1893 and check their criticality considering minimum seismic Load magnitude of 0.36g vis-à-vis wind load designs.

4.5.7 Shade Protection (Lightning Consideration)

To protect the line and towers against lightning, the angle of shield for 132 kV double circuit towers shall be less than 30° .

4.6 Loads on Towers

Loads shall be computed for the following considerations as per IS: 802 (Part I/ Sec1): latest & CBIP publication No: 323. Manual on Transmission Lines and technical specification

- i) Classification of Loads
 - Climatic Loads under Normal Condition (Reliability)
 - Failure Containment Loads (Security Requirements)
 - Construction and Maintenance Loads (Safety Requirements)
- ii) Computation of Loads
 - Transverse Loads comprising Reliability requirements, security requirements and safety requirement
 - Vertical Loads comprising Reliability requirements, security requirements and safety requirement
 - Longitudinal Loads comprising Reliability requirements, security requirements and safety requirement
- iii) Wind Load on Tower

Kohalpur Nepalgunj 132 kV TLP

The wind load on towers shall be worked out by dividing the tower into different panels duly considering appropriate drag coefficient and gust response factors.

iv) Wind Load on Conductor/ Ground Wire

The wind load on conductors and ground wire corresponding to wind loads at 100% design wind pressure at every day temperature or 36% wind pressure at minimum temperature shall be worked out on each Line conductor and ground wire considering the average height of conductor/ ground wire up to clamping point on tower less 2/3 of conductor/ ground wire sag at minimum temp and Nil wind pressure.

v) Wind Load on Insulator Strings

Wind load on insulator Strings corresponding to wind loads at 100% design wind pressure at every day temperature or 36% wind pressure at minimum temperature shall be determined from the attachment point to the center line of the conductor in case of suspension towers and up to the end of clamp in case of tension towers in the direction of the wind for design wind pressure. 100% of the area in case of polymer insulator shall be adopted for working out the projected area of insulator string.

4.6.1 Loading Conditions

- Reliability Conditions
 - Transverse Loads
 - Vertical Loads
 - Longitudinal Loads
- Security Conditions
 - Transverse Loads
 - Vertical Loads
 - **Longitudinal Loads**
 - Narrow front wind load (for Suspension Towers only DA)
- Safety Conditions
 - Transverse Loads
 - Vertical Loads
 - **Longitudinal Loads**

4.6.2 Specific Details of Loading under Safety Conditions

Transverse Loads

- Wind loads to be considered as Nil.
- Mechanical tension at 32°C and Nil wind on account of line deviation shall be considered under Normal and Broken Wire Conditions
- **Vertical Loads**

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Kohalpur Nepalgunj 132 kV TLP

- Load of 150 kg to be considered acting at each cross-arm as a provision for weight of lineman with tools
- ii) Load of 350 kg to be considered acting at the tip of Cross-arms
- iii) Erection load of 1000 kg at each lifting point located a distance of 600 mm from tip of crossarm
- iv) All bracing and redundant members of the towers which are horizontal or inclined up to 15° from horizontal shall be designed to with stand an ultimate vertical loads of 150 kg considered acting at center independent of all other loads
- v) Loads due to weight of conductors/ ground wire based on design weight span, weight of insulator strings and accessories. For broken wire condition where the load due to due to weight of conductor/ ground wire shall be considered as 60% of weight span.
- vi) Self-weight of tower structure up to point/ level under consideration

Longitudinal Loads

These loads shall be taken as under

i) **For normal conditions** – These loads for dead end towers shall be considered as corresponding to mechanical tension of conductor/ ground wire at everyday temperature and no wind.

ii) For broken wire conditions

- a) **Suspension Towers** Longitudinal load per conductor and ground wire shall be considered as 1000 kg and 500 kg respectively.
- b) **Tension Towers** Longitudinal load equal to twice the sagging tension (sagging tension shall be taken as 50 percent of tension at everyday temperature and no wind) for wires under stringing and 1.5 times the sagging tension for all intact wires (stringing completed).

4.6.3 Broken wire criteria

Broken wire conditions as applicable to Four circuit towers during the design of towers:

Suspension Tower (0 ° - 2°) (QA)

Any two phases broken on the same side and same span or anyone phase and one ground wire broken on the same side and same span whichever combination is more stringent for a particular member.

Small (0 ° -15°) and Medium angle tension towers (15° -- 30°) (QB, QC)

Any two phases broken on the same side and same span or anyone phase and one ground wire broken on the same side and same span whichever combination is more stringent for a particular member.

Large angle tension towers (30°-60°) and dead end towers (QD, DD)

Any three phase broken on the same side and same span or any two phases and one ground wire broken on the same side and same span whichever combination is more stringent for a particular member.

• Extra Large angle tension towers (60°-90°) (QF) or Special Tower

Kohalpur Nepalgunj 132 kV TLP

Any three phase broken on the same side and same span or any two phases and one ground wire broken on the same side and same span whichever combination is more stringent for a particular member.

4.6.4 Anti-cascading checks

All Tension towers shall be checked for anti-cascading/ sectional considerations with all conductors and ground wire intact only on one side of the tower.

• Transverse Loads

These loads shall be taken under NIL wind condition.

Vertical Loads

These loads shall be the sum of weight of conductor/ ground wire as per weight span of intact conductor/ ground wire, weight of insulator strings and accessories.

• Longitudinal Load

These loads shall be pull of conductor/ ground wire at everyday temperature and NIL wind applied simultaneously at all points on one side with zero-degree line deviation.

4.6.5 Tension Limits

Line Conductor/ ground wire tension at everyday temperature and without external load, should not exceed the following percentage of the ultimate tensile strength of the conductor:

- Initial unloaded tension 35%
- The final unloaded tension of conductors at every day temperature for Transmission line shall not exceed 22% of UTS of conductor and 20% of UTS of ground wire.

Provided that the ultimate tension under everyday temperature and 100% design wind pressure, or minimum temperature and 36% design wind pressure does not exceed 50% of the ultimate tensile strength of the conductor/ ground wire.

4.6.6 Strength Factors Related to Quality

The reduction in strength due to dimensional tolerance of the structural sections and yield strength of steel used, the following strength factors shall be considered:

- i. If steel with minimum guaranteed yield strength is used for fabrication of tower, the estimated loads shall be increased by a factor of 1.02.
- ii. If steel with minimum guaranteed yield strength is not used for fabrication of tower, the estimated loads shall be increased by a factor of 1.05. In addition to the provision (i) above.

4.7 Details of Structural Steel

Det	ails of structural steel	
a)	Steel quality	IS:2062, BS:4360

Kohalpur Nepalgunj 132 kV TLP

Deta	Details of structural steel				
	1.	Minimum guaranteed yield stress (kg/cm²)	MS	2600	
			HT	3600	
	2.	Maximum allowable stress (kg/cm2) for tension members (or net area)		2600 3600	
	3.	For compression member (on gross area)	MS HT	As per IS:802 As per IS:802	
b)	De	tails of nuts & bolts			
	1.	Shear stress on shank of class 5.6 bolts (kg/cm²)		3160	
	2.	Bearing stress on shank of class 5.6bolts (kg/cm2)	MS HT	4440 6322	
	3.	Tension on net area of the thread (kg/mm2) Class 5.6		2590	

4.8 Slenderness Ratio L/R

The Slenderness ratio (L/R) {Ratio of maximum un-braced or unsupported length (L) to the least radius of gyration (R)} of a member shall not exceed:

a. For Compression Members

Leg members, ground wire peak and cross arm chord members: 120
Bracing and other member having calculated stress : 200

Redundant or Secondary members without calculated stress: 250

b. For Tension Members

All tension Members : 400

In determining the slenderness ratios for various members suitable provisions shall be taken into consideration for various types of end connections, eccentricity of load transfer in the members effective length of members as per the CBIP Manual Guideline Annexure-12 and 13.

Kohalpur Nepalguni 132 kV TLP

4.9 Miscellaneous Design Criteria

a) Redundant Members

Redundant members, if placed at an angle less than 15⁰, are required to be checked to withstand bending also due to mid-point concentrated load of 150 kg independent of other loads

b) Bolted Joint

In case where the bolt and structural member are of different materials, the lowest of the ultimate strength of bolt and structural member governs the breaking strength of the joint.

c) Framing

The angle between any two members common to a joint of a trussed frame shall preferably be greater than 20° and never less than 15° due to un-certainty of stress distribution between two closely spaced members.

d) Gusset Plates

Minimum thickness of gusset shall be 2mm more than the lattice it connects, only in case when the lattice is directly connected on the gusset outside the leg member. In no case gusset shall be less than 5mm in thickness

e) Minimum Thickness of Members

Leg Members : 6 mm
Other Members : 4 mm

f) Minimum size of Members : ISA 45x45x4mm

g) Minimum Width of Flange

Minimum flange widths for bolts of different diameter are given as under:

Bolt Día (mm)	16	20	24
Flange Width (mm)	45	50	60
Thickness of spring washers (mm)	3.5	4.0	4.5

The Loading trees for Reliability, Security, Safety conditions of all towers shall be prepared and ensure that the proposed tower geometry is satisfying all essential electrical clearances before design of the tower.

The unsupported length of stub between chimney and the last bracing connection to the leg should also be checked for combined direct and bending stresses and an additional cleat of required size be provided. The supporting calculations shall also be provided. The design of stub & foundation cleats shall be designed as per the CBIP manual & ASCE 10-97, ASCE-52.

The structural assembly drawing should be prepared according to IS 696 and IS 962. The drawing shall show the complete design dimensions, member length, slope factors or triangles, section sizes, bend lines, gauge lines, diameter, length and number of bolts, spacers, washers, sizes of gusset plates, position of holes etc., and relative location of various members.

Single-Stage: Two-Envelope

Turnkey Bidding Document

Kohalpur Nepalguni 132 kV TLP

Sufficient number of elevation, cross section and plan view should be presented to clearly indicate the details of joints and arrangement of members.

All members should be clearly shown and respective identification mark allotted to each member.

The drawing should be drawn to scale large enough to convey the information adequately.

All connection should be detailed to minimize eccentricity of connections. Due consideration should be given to the additional stresses introduced in the member on account of eccentricity of connection.

Dimension of all members and on a member, the distances such as hole - to - hole, length, gauge distance etc., should be given in full integers and not in decimals.

4.10 Construction of Tower Steel work

All designs shall be such that no trouble shall arise in service from vibration or excessive deflection due to the use of too light a section.

Bolt holes shall not be more than 1.5 mm larger in diameter than the corresponding bolt diameter. The distance from the center of bolt holes to the edge of any steel section shall not be less than 1.5 times the diameter of the bolt.

All tower member joints or joints between prefabricated panels to be made at Site shall be secured with bolts, nuts and washers. As far as conveniently possible, bolt heads, rather than nuts, shall be on the outer or upper faces of support joints.

Structure cross-arms shall be so arranged that they can be disconnected from the body without disturbing main structure body members.

The conductor landing points on cross-arms shall be so arranged that an additional hole for the attachment of conductor erection and maintenance tackle is provided adjacent to each hole for tension shackles. It shall be possible to apply full conductor tension and weight safely to these additional attachment points.

Mild steel when stored in the fabricators stockyard prior to fabrication and galvanizing shall be marked continuously throughout its length with a light blue water paint line. In addition, the grade number of the steel shall be painted on and ringed around with paint.

Members that are capable of being fitted in more than one position on the structure shall all be of the grade of steel suitable for the most onerous loading conditions.

4.10.1 Step bolts

Two diagonally opposite legs of all structures shall be equipped with galvanized step bolts (M16 x 160mm) confirming IS:10238 on the leg at intervals not exceeding 380 mm commencing immediately above the anti-climbing device and extending to within one meter of OPGW. Step bolt design shall be to the approval of the Employer or the Employer's Representative. Holes for removable step bolts below the anti-climbing device shall be provided at no more than 380 mm intervals on the legs to which the permanent step bolts are fitted.

Fifty (50) nos. spare step bolts shall be supplied for fixing in the above holes whenever required.

4.10.2 Workmanship

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Kohalpur Nepalguni 132 kV TLP

All work shall be in accordance with the best modern practice in the manufacture and fabrication of materials covered by this specification. The Contractor shall be responsible for the correct fitting of all parts, shall replace free of cost any defective material discovered during erection and pay all costs of field corrections for such replacement. All parts of the structure shall be neatly finished and free from kinks, twists or bends. All holes shall be made with sharp tools and shall be clean cut without torn or ragged edge. The fabrication shall be in strict compliance with the shop drawings prepared by the Contractor and approved by the Employer or the Employer's Representative.

Structural materials shall be straight and cleaned of all rust and dirt before laid out or worked in any manner. Shearing and cutting shall be performed carefully. Manually guided cutting torches shall not be used.

All bolt holes in steel members shall be punched, sub-punched, reamed or drilled before galvanizing. Holes shall be drilled instead of being punched if the thickness of the metal exceeds the diameter of the hole. All holes shall be clean-cut and without torn or ragged edges. All holes shall be cylindrical and perpendicular to the member.

The diameter of the finished bolt hole shall not be greater than the normal diameter of the bolt plus 1.5 mm. Plugging, welding or slotting of mis punched, mis reamed or mis drilled holes will not be permitted. The holes shall be located accurately so that when the members are in position the holes will be lined up before being bolted.

4.10.3 Member fabrication-galvanising

All galvanizing shall be carried out by the hot dip process and shall conform in all respects with BS 729.

All surface defects in the steel including cracks surface laminations, laps and folds shall be removed in accordance with BS 4360/IS 2629/IS 209/IS2633. All drilling, cutting, welding, forming and final, fabrications of unit members and assemblies shall be completed before the structures are galvanized. The surface of the steelwork to be galvanized shall be free from welding slag, paint, oil, grease and similar contaminants.

The preparation for galvanizing and the galvanizing itself shall not distort or adversely affect the mechanical properties of the material.

For all parts other than steel wires the coating shall consist of at least 610 grams of zinc per square meter of surface and be not less than 0.086 mm in thickness for steel members thickness equals to or more than 5mm.

At least 460 grams of zinc per square meter and 0.065 mm for thickness of members less than 5mm.

On removal from the galvanizing bath the resultant coating shall be smooth continuous free from gross surface imperfections such as bare, spits, lumps, blisters and inclusions of flux, ash or dross.

During off loading and erection of supports the use of nylon or braided slings shall be used. Galvanized steel work which is to be stored in the works or on site shall be stacked so as to provide adequate ventilation to all surfaces to avoid wet storage staining.

Small areas of the galvanized coating damaged in any way shall be restored in accordance with the procedures to be approved by the Employer.

Tests on samples shall be carried out to BS 729/IS 4759/IS6745/IS14394. The Contractor is required to furnish Elcometer or any other appropriate equipment for verification of galvanizing thickness of tower members at site to the satisfaction and the equipment shall be the property of the Employer at the completion of all works. Price of the said equipment is deemed to be included in the contract.

Single-Stage: Two-Envelope

Kohalpur Nepalgunj 132 kV TLP

4.10.4 Bolts and nuts

No bolt of diameter less than 16mm shall be used. No screwed threads shall form part of shearing plane between members.

When in position all bolts or screwed rods shall project through the corresponding nuts by at least one full thread but such projection shall not exceed 10mm.

Bolts shall be galvanized after thread cutting to the same specified coating weight as specified in BS 729/IS1367/IS1368/IS12427 /IS14394

Spring washers shall confirm to IS3063 and pack & plain washers confirm IS6821.

Nuts and heads of all bolts shall be hexagonal.

All bolts, nuts and washers shall be hot dip galvanized and subsequently centrifuged (according to BS 729). Nuts shall be tapped after galvanizing and the threads oiled to permit the nuts to be finger turned on the bolt for the full depth of the nut.

After fixing, bolt heads, washers and nuts shall receive two coats of zinc rich paint. Only one type of bolt for the whole project, either mild steel or high tension steel will be permitted in order to prevent inadvertent misuse. The Contractor shall state clearly which type of bolt his designs are based upon.

All bolts supplied for this contract will be provided with one nut and one spring washer of approved design. Taper washers and packers are to be fitted where necessary.

The Contractor shall select two samples of each type of bolt and nut to be used on the Contract and send these samples to the Employer or the Employer's Representative for approval within one month of the effective date of the Contract. The Employer or the Employer's Representative will then reject bolt consignments, which in his opinion fall in any respect below the standard of samples submitted and approved.

4.10.5 Payment for Line Tower

Payment for the contract item, "Line tower" including any required painting, will be made at the unit bid price per tower type. For supply, the tower is divided into Basic body and leg extension. For Erection the unit price shall include all cost incurred in transportation and erection of a complete tower. Therefore, in the Price Schedule, the unit bid price shall include full compensation for all the costs incurred in furnishing all materials, equipment, labors and all other operational related to tower design, fabrication delivery etc. as specified.

4.11 Tower Earthing

4.11.1 General

In addition to the mechanical OPGW termination requirement, all steel towers shall be fitted with separate earth bonds for OPGW continuity and the Contractor shall provide all necessary connecting facilities.

All the four legs of the tower shall be connected to the earth through electrode as shown in Drawing Nos. DWG008 and DWG009.

The footing resistance shall be measured by the Contractor and approved by the Employer or the Employer's Representative for every tower prior to the stringing of the OPGW. The maximum footing resistance to the general mass of earth shall be 10 Ohms.

Kohalpur Nepalgunj 132 kV TLP

Steel towers need not be fitted with a separate earth bond and earthing continuity throughout the support will therefore depend upon surface contact between members.

All towers shall be provided with means for connecting an additional earthing device as required by the Employer or the Employer's Representative. Holes are to be provided in all supports near ground level to take bolts for earth lead connections.

All legs of every tower shall be equipped with galvanized steel wire and cast into the foundation concrete to be readily available for the connection of additional earth electrodes in the event of the initial footing resistance exceeding 10 ohms. Bidder's rates for the structures shall include for such additional works.

Galvanized steel rods shall be driven where necessary in sufficient number to ensure the combined structure footing and earth electrode resistance does not exceed 10 Ohms. Where it is necessary to drive more than one earth electrode at any support, the locations shall be to the approval of the Employer or the Employer's Representative. All earth electrodes shall be electrically bonded together using galvanized steel wire.

The tops of all electrodes shall be at least 500 mm below the surface of the normal reinstated ground level.

Connection of earth wires to the structure stub-angles shall be by bolting. Bidders shall submit details of their proposals in this regard.

4.11.2 Payment for Grounding Materials

Payment for grounding materials shall be made at the unit price bid. Therefore, in the Price Schedule, the unit bid price shall include full compensation for all the costs incurred in furnishing all materials, equipment, labors and other operational related to the scope of work of earthing as specified. Each set shall mean one complete set for each tower footing.

4.12 Tower Accessories

4.12.1 Anti-climbing device

At a height of at least 3 m from floor or normal ground level (whichever is the higher) an adjustable anti climbing frame shall be fitted to all faces of each tower.

The device for tower shall also prevent climbing access inside the structure body.

At each climbing leg a suitable gate shall be provided to allow access by the Employers maintenance staff.

4.12.2 Danger, Phase and Number Plate

All structures shall be equipped with a suitable framework mounted immediately above the anti-climbing device level, to accommodate the followings in a conspicuous position:

- a) One (1) Danger Sign
- b) One (1) Tower Number Sign
- c) Two (2) Circuit Plate
- d) Twelve (12) Phase Signs (Phase Color Plates)

All terminal structures shall be equipped with additional frameworks, mounted immediately above the anticlimbing device level, to accommodate a set of three phase color plates.

Kohalpur Nepalguni 132 kV TLP

All plates shall be affixed to the framework by means of galvanized bolts, nuts and lockouts. Washers should be of such material and so positioned that damage to the enamel will be prevented. The height for fixing these accessories shall not be more than 4.5 m above the ground level. The corners of the number, danger & circuit plate shall be rounded off to remove sharp edges. All plates shall be manufactured from mild steel sheet with vitreous enameled finish. The letters figure and the conventional skull and bones of danger plates shall conform to IS:2551-1963 and shall be in a signal red on the front of the plate. A detail drawing for such plates shall be prepared by Contractor subject to the Employer's approval.

Line color-coded vitreous enamel identification plates should be fitted to the climbing legs of every structure in accordance with line color code scheme to be supplied to the successful Bidder. Each plate shall be approximately 70 mm wide and shall be applied one immediately below the anti-climb device, one halfway up the towers and one immediately below the lowest cross arm.

4.12.3 Arial Patrol Sign (Aviation Sign)

The Contractor shall install Aerial Marker Balls along the length of OPGW to act as a visual warning so low flying aircraft don't run into them in the vicinity of airports or aviation route as required. The size of such aerial balls shall not be less than 91 cm to be observed from and distinctively shaped (spherical or cylindrical). Orange, Red & White are some of the most commonly used colors in such aerial markers. After final check survey, the Contractor shall propose the sections where such aviation signs are essential. The Employer reserves the right to approve the sections proposed by the Contractor.

Payment of such aviation signs shall be made in accordance to the BoQ and one set is meant to number of such balls in one section of line (i.e. in between two adjacent towers)

4.12.4 BIRD GUARDS

To prevent birds perching immediately above the suspension insulator string of suspension and/ or tension towers and fouling the same with dropping, suitable bird guards shall be provided at cross arm tips of all suspension towers. The bird guard arrangement shall be such that it shall either prevent bird from perching in position where they are liable to cause the damages or ensure that if birds do perch, dropping will fall clear of the insulator string.

4.12.5 Payment for Tower Accessories

Payment for tower accessories such as anti-climbing device, danger sign, tower number sign, circuit plate, phase sign, areal patrol sign, and bird guards shall be made at the unit price. Therefore, in the Price Schedule, the unit bid price shall include full compensation for all the costs incurred in furnishing all materials, equipment, labors and other operational related to the scope of work as specified.

4.13 Final Design and Design Drawing

The detailed design shall be prepared in line with the approved line diagram, which shall be submitted to the Employer in required number of copies.

The tower accessories drawings like anti climbing device, danger sign, tower number sign, circuit plate, phase sign, areal patrol sign, and bird guards, step bolt, D-shackle etc. shall also be prepared by the Contractor and shall be submitted to the Employer required number of copies along with the soft copies in USB Flash Drive. These drawings shall be prepared in A4 size sheet only.

Kohalpur Nepalguni 132 kV TLP

Once the design is approved, the approved design drawing shall be submitted to Employer in four copies, along with one soft copy. The overall responsibility of fabricating tower for its correctness lies with the Bidder only, and should ensure that all the tower members can be fitted without any undue strain on them.

4.13.1 Shop drawing

The shop drawings shall be prepared based on the approved design drawing. Shop drawing should contain complete information necessary for fabrication of the component parts of the structure. These drawings should clearly show the member size, length and marks, hole positions, gauge lines, bend lines, edge distances, amount of chipping and notching etc.

For gusset fabrication, separate individual item wise template can be made to facilitate gusset fabrication as well as inspection. In case of member to be bent, shop drawing should indicate the provision for variation in length. At the design/ drawing stage itself, drawing should indicate that the degree of bend given in any member such that neither flange width nor thickness shall vary beyond permissible limits.

Items requiring steep bending may be cut and welded as per approved welding procedure.

At the time of proto stage/ tower testing itself specific bend gauge and template to locate the holes after bending must be established for the items to be bent.

4.13.2 Bill of Material

Bill of material for each type of tower and extensions required should be prepared separately. This should indicate grade of steel (like high tensile steel, mild steel etc.), mark numbers, section sizes, member's lengths, their calculated weights, type & number of bolts, nuts and washer and their sizes, total quantities and structural drawing numbers.

4.13.3 Marking

Each individual member shall have an erection mark conforming to the component number given to it in the fabrication drawings. This mark shall be made with marking dies of 16 mm size before galvanizing and shall be legible after galvanizing.

A-BB-CC-DDD

A = NEA's code assigned to the Bidder –Alphabet

BB = Bidder's Mark-Numerical

CCC = Tower type-Alphabet + Numerical

DD = Number mark to be assigned by Bidder -Numerical.

HT = High Tensile steel

4.13.4 Shop Erection/ Proto type Tower Assembly

Steel work should be temporarily erected in horizontal or vertical so that accuracy of the member can be checked before testing the towers or commencing mass fabrication as applicable. The proto assembly is done on the basis of approved structural shop drawings of towers, all leg extensions, stubs & templates for all types of towers.

Kohalpur Nepalgunj 132 kV TLP

4.14 Testing of Towers

4.14.1 General

Testing of tower generally serves as guide to good tower design and therefore shall not be considered as requisite proof test for all towers. The test shall be conducted on full scale prototype tower as per the approved loading schedules and rigging diagram. The members constituting the prototype shall be of same grade of steel as specified in the design and fabrication shall conform to the provision stipulated in IS 802 (Part – II). The tower shall be tested on rigid foundation.

The test tower shall successfully withstand the ultimate loads specified for various conditions.

4.14.2 Leg Anchorage

The tower shall be erected vertically on rigid foundation with as much unbraced portion of the stub protruding above ground level as provided in the drawing.

4.14.3 Calibration of Measuring Instruments

All measuring instruments shall be calibrated in a systemic manner with the help of standard weights. The calibration shall, before commencing the test on each tower, be done up to the maximum anticipated load to be applied during testing. Calibration curves for the instrument to be used during testing shall be drawn by the testing authorities and the test loads shall be suitably corrected with the help of these curves.

Calibration of load cells shall be done with Universal Testing Machine (UTM) or by using standard weights. The UTM in turn shall be calibrated once in every six months or periodically as per advice of the supplier of LITM

4.14.4 Types of Tests

- Bolt-Slip Test
- Load Tests
 - Reliability Condition (Normal Condition)
 - Security and Safety Conditions as well as Anti-Cascade Conditions
 - Broken Wire Condition
- o Destruction Test including Material test after Destruction Test

4.14.5 Method of Load Application

Load shall be applied according to approved rigging diagram through normal wire attachments, angles, or bent [plates. U bolt/ D shackle or swinging brackets (hangers) may be used in the test tower if desired by the Employer, provided that satisfactory and safe rigging is attained.

The various type of loads, transverse, vertical and longitudinal shall be applied in such a way that there is no impact loading on the tower due to jerk from the winches.

Loading cases (values, direction and points of application of loads) shall be determined by the Bidder and get approved form the Employer before applying to the test towers.

4.14.6 Loads and Deflection Measurement

Kohalpur Nepalgunj 132 kV TLP

All loads shall be measured through a suitable arrangement of strain devices or by using weights. Positioning of strain devices shall be such that the effect of pulley friction is eliminated. In case the pulley friction cannot be avoided the same shall be measured by means of standard weight and accounted for in the test loads.

Tower deflection under loads shall be measured by suitable procedure at the top cross arm level on the front side of the transverse and longitudinal faces or front and rear side of the transverse faces. Deflection reading shall be recorded for the 'before load', ' load on' and 'load off' conditions.

4.14.7 Testing Procedure

Bolt slip test – In bolt slip test, the test loads up to 50% of Ultimate Normal Condition (Reliability Condition) Loads are gradually applied and kept constant for 1 minute at these loads and then the loads are released gradually.

The initial and final reading on the scale before application and after the release of loads respectively shall be taken with the help of theodolite. The difference between these readings gives the value of the bolt slip.

Normal load/ broken wire load tests – All loads shall be applied gradually up to the ultimate design loads in the following steps and shall be released in the similar manner:

- > 25%
- > 50%
- > 75%
- > 90%
- > 95%
- ➤ 100%

4.14.8 Observation Periods

Under normal and broken wire load tests, the tower shall be kept under observation for sign of failure for one minute (excluding the time for adjustment of loads) for all intermediate steps of loading up to and including 95 % of ultimate design loads.

For normal as well as broken wire tests, the tower shall be kept under observation for five minutes after it is loaded up to 100 percent ultimate loads.

While the loading operations are in progress, the tower shall be constantly watched, and is it shows any tendency of failure anywhere, the loading shall be immediately stopped, released and then the entire tower shall be inspected. The reloading shall be started only after the corrective measures are taken.

4.14.9 Recording

The deflection of the tower shall be recorded at each intermediate and final stage of normal loads/ broken wire load test by means of a theodolite and graduated scale.

4.14.10 Destruction Test

If the Employer desired so, destruction test for the tower shall be carried out.

Kohalpur Nepalgunj 132 kV TLP

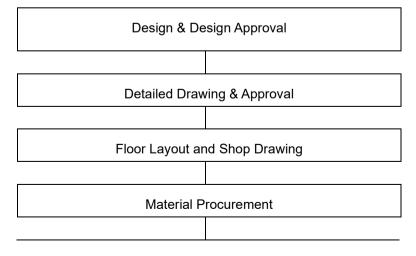
Destruction test shall be carried out under normal condition or broken wire condition as agreed between the Employer and the Bidder.

All the provision of the specification and IS 802 for normal and broken wire conditions shall be applicable to destruction tests of Double circuit towers during the design of towers.

4.15 Material Quality Control

Various grade of steel used in tower, details of sections, bolts and nuts and other accessories need a detailed scrutiny and quality control procedure before being processed for fabrication, assembly etc. All structural material including nuts and bolts shall be in compliance with their respective Indian and international Standards.

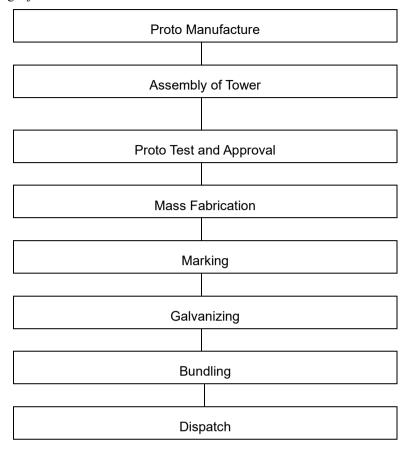
Chemical composition and mechanical properties of various grade of steel used shall be clearly mentioned and those shall be in accordance with relevant IS or international standards.


Steel Sections of tested quality in conformity with IS: 2062 (Designated Yield Strength. 250 MPa) and/ or IS: 8500 grade 490 (Designated Yield Strength 350 MPa) are to be used in towers, extensions, stubs and stub setting templates. The Contractor can use other equivalent grade of structural steel angle sections and plates conforming to latest International Standards. However, use of steel grade having designated yield strength more than that of EN 10025 grade S355 JR/JO (designated yield strength 355 MPa) is not permitted, unless otherwise indicated in this specification.

For designing of towers, preferably rationalized steel sections shall be used. During execution of the project, if any particular section is not available, the same shall be substituted by higher section. Any cost on account of the same shall be borne by the Bidder. However, design approval for such substitution shall be obtained from the Employer before any substitution and records of such substitutions shall be maintained by the Bidder.

At the time of procurement of steel other than that conforming to IS 2062, green color on the edge of HT material on both sides is applied so that there is no mix up of MS and HT steel in stockyard as well as in shop. A distinct green color patch is maintained throughout and on shop sketch also, HT marking is added for identifying high tensile steel item.

4.16 Process Flow Chart for Fabrication of Towers


In general, following flow chart shall be followed for design, assembly, testing and supply of towers:

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

4.17 Packing (Tower wise)

Angle section shall be wire bundled.

Cleat angles, gusset plates, brackets, fillet plate, hanger and similar loose pieces shall be tied and bolted together in multiples or securely wired through holes. Bolts, nuts washers and other attachments shall be packed in double gunny bags accurately tagged in accordance with the contents. The packing shall be properly done to avoid losses & damages during transit. Each bundle or package shall be appropriately marked. It is however recommended that the Contractor make bundle for each tower as per tower number before dispatch of tower parts to avoid member sorting problem at site.

4.18 Standards

The design, manufacturing, fabrication, galvanizing, testing, erection procedure and materials used for manufacture and erection of towers, design and construction of foundations shall conform to the following Indian Standards (IS)/ International Standards which shall mean latest revisions, with amendments/ changes adopted and published, unless specifically stated otherwise in the Specification. In the event of supply of material conforming to Standards other than specified, the Bidder shall confirm in his bid that these Standards are equivalent to those specified. In case of award, salient features of comparison between the Standards proposed by the Bidder and those specified in this document will be provided by the Contractor to establish their equivalence.

The material and services covered under these specifications shall be performed as per requirements of the relevant standard code referred hereinafter against each set of equipment and services. Other

Kohalpur Nepalgunj 132 kV TLP

internationally acceptable standards which ensure equal or higher performance than those specified shall also be accepted.

SI. No.	Indian Standards (IS) Standards / Guides	Title	Internationally recognized
1.	IS: 209-1992	Specification for Zinc	ISO/R/752 ASTM B6
2.	IS: 278-1991	Galvanized Steel Barbed wire	ASTM A131
3.	IS: 800-2007	Code of Practice for General Building Construction in Steel	CSA 6.1
4. (a)	IS: 802(Part1) Sec 1-1995	Code of Practice for General	ASCE 52
		Building Construction in Steel Sec 2-1992 in Overhead Transmission Line Towers: Materials, loads and Permissible Stresses	IEC 826 BS 8100
		Section 1 Materials and loads	
		Section 2 Permissible stresses.	
4. (b)	IS: 802-1990 (Part 2)	Code of practice for use of structural steel in over- head Transmission Line : Fabrication, Galvanizing, Inspection and Packing	
4. (c)	IS: 802-1990 (Part 3)	Code of practice for use of Structural Steel in over- load Transmission Line Towers Testing	ASCE 52 IEC 652
5.	IS: 808-1991	Dimensions for Hot Rolled Steel Beam, Column, Channel and Angle Sections.	
6.	IS: 875-1992	Code of Practice for Design Loads (other than Earthquakes) for Buildings and Structures.	
7.	IS: 1363-1990	IS: 1363-1990 Hexagon Nuts(size range M5 to M36)	
8.	IS: 1367-1992	Technical Supply Conditions for Threaded Steel/ Fasteners	
9.	IS: 1477-1990	Code of practice for Painting of Ferrous Metals in Buildings:	
		Part-I Pre-treatment	

Kohalpur Nepalgunj 132 kV TLP

SI. No.	Indian Standards (IS) Standards / Guides	Title	Internationally recognized
		Part-II Painting	
10.	IS: 1573-1991	Electro-Plated Coatings of zinc on iron and Steel	
11.	IS: 1852-1993	Rolling and Cutting Tolerances of Hot Rolled Steel Products	
12.	IS-1893-1991	Criteria for Earthquake Resistant Design of Structures	IEEE 693
13.	IS: 2016-1992	Plain Washers ISO/R887	ANSIB18-22.1
14.	IS: 2062-1992	Steel for general structural purposes	
15.	IS: 2074-1992	Ready Mixed Paint. Air Drying, Red Oxide, Zinc Chrome, Priming Specification.	
16.	IS: 2551-1990	Danger Notice Plates	
17.	IS: 2629-1990	Recommended Practice for Hot Dip Galvanizing of iron and steel.	
18.	IS: 2633-1992	Method of Testing Uniformity of Coating of Zinc Coated Articles	ASTM A123 CSA G164
19.	IS: 3043-1991	Code of Practice for Earthing	
20.	IS: 3063-1994	Single coil Rectangular section Spring Washers for Bolts, Nuts Screws	DIN-127
21.	IS: 3757-1992	High Strength Structural Bolts	
22.	IS: 4759-1990	Specification for Hot zinc coatings on structural steel and other Allied products	
23.	IS: 5369-1991	General Requirements for Plain Washers	
24.	IS: 5613-1993	Code of Practice for Design installation and Maintenance of Overhead Power Lines	
		Section 1 Design Part 2,	
		Section 2 Installation and Maintenance	
25.	IS: 6610-1991	Specification for Heavy Washers for Steel structures.	

Single-Stage: Two-Envelope

Turnkey Bidding Document

Kohalpur Nepalgunj 132 kV TLP

SI. No.	Indian Standards (IS) Standards / Guides	Title	Internationally recognized	У
26.	IS: 6623-1992	High Strength Structural Nuts		
27.	IS: 6639-1990	Hexagon Bolts for Steel Structure.	ASTM A394 CSA B334	
28.	IS: 6745-1990	Method for Determination of weight of Zinc coated iron and Steel Articles.	ASTM A	A 90
29.	IS: 8500-1992	Specification for Weldable Structural Steel (Medium & High Strength Qualities)		
30.	IS: 10238-1989	Step Bolts for Steel Structures		
31.	IS: 12427-1988	Bolts for Transmission Line Towers		
32.	IS:4091-1979	Code of practice for design and construction of foundation for transmission line between tower & poles.		
33.	IS:5358	Specification for hot dip galvanized coating and fasteners		
34.	IS: 7215-1992	Specification for tolerance for fabrication of steel structures		

Kohalpur Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 5 TOWER FOUNDATION AND CIVIL WORKS

Kohalpur Nepalgunj 132 kV TLP

TABLE OF CONTENT

5	TOWER FOUNDATION AND CIVIL WORKS	3
5.1	General	
5.2	Foundation Design	
5.3	Design loads	<u>5</u>
5.4	Foundation type	6
5.5	Footings	
5.6	Stub Angle Anchor	
5.7	Excavation and Backfilling	
5.8	Dewatering	11
5.9	Timber Shoring	11
5.10	Select Borrow	12
5.11	Foundation Construction	12
5.12	Foundation Protection Works	1 [©]

Kohalpur Nepalguni 132 kV TLP

5 TOWER FOUNDATION AND CIVIL WORKS

5.1 General

The Contractor shall furnish all materials, equipment and labor and perform all operations required for the design and construction of all of the concrete foundations and other relevant civil works, as specified herein and as evidently necessary to complete the work.

Before start of design of foundation, successful bidder shall carry out geotechnical investigation during detailed/ check survey of Transmission Line route primarily consists of laying trial bore-holes (normally up to 6.0 meter below natural ground level) at all tower locations or as directed by the Employer to have a fair idea of soil type/ nature and subsoil water position. If the soil characteristics are changing rapidly or soil up to 6.0 meter is very weak, the depth of bore-hole be increased beyond 6.0 meters so as to know the soil properties/ type below the foundation. The bore log data containing information such as position of sub-soil water table, soil strata, the crop pattern in the agricultural fields where the foundation is to be laid and the suitability for founding the required foundation, shall be submitted to the Employer for according approval for "Classification of foundation" at each location.

5.2 Foundation Design

General

The foundation for tower structure plays an important role in the safety and satisfactory performance of the structure as it transmits the load from the structure to the soil. Therefore, the foundation shall be so designed to carry the entire load as required, with sufficient factor of safety as recommended by the Code of practices.

The foundation in various types of soils shall be designed to suit the soil conditions of particular type, from the recommendation of the geotechnical investigation report, which has to be approved by the Employer.

Several types of foundations are used for different type of transmission towers and different types of soil. The foundation should be strong and stable, and able to take care of all the loads like dead load, live load, wind loads, seismic load, erection loads etc., causing vertical thrust, uplift as well as horizontal reaction.

The quantity of foundations in every type given in the Price Schedule is provisional only and may vary as per the result of the detail soil test.

Foundations should be designed for a working life of 50 years and Bidders should comply in full with the requirements of these specifications in establishing his design. In all locations, all steelwork, whether part of the tower or part of the stub angle foundations shall be completely encased in concrete to ensure a cover of 100mm from any part of the stub leg or tower from a point 300mm above ground down to the base of the main foundation block. All Stubs shall have cleats designed to carry the entire stub load.

The Contractor shall design at least one foundation for each of the foundation types specified on the bid drawings for all types of towers used in the line to produce an economical family drawings and calculation for the approval of the Employer or Employer's representative before commencement of construction. Upon completion of detail soil test, the Contractor shall select the most economical foundation subject to the approval of the Employer or Employer's representative. The general foundation design parameters are given in Schedule A. 13 and Conceptual Drawing is given in Dwg. No. DWG012.

Submittal

The Contractor shall submit for each type of foundation required number of sets of design calculations, detail drawings and reinforcing steel and concrete schedules to the Employer or Employer's representative for review and approval/ comment before construction commences. Review of the foundation designs by the Employer's representative in no way relieves the Contractor from his responsibility for an adequate foundation design, even though this specification sets forth the basic foundation design criteria. Upon receiving the Employer's or Employer's representative's comments, the Contractor shall submit to

Kohalpur Nepalgunj 132 kV TLP

the Employer required number of sets, electronic copy and prints of drawings of all foundation details, including reinforcing steel schedules on drawing sheet sizes, form, heading, etc., as required by the Employer for record.

Structural Design of Foundation

It comprises the design of chimney and the design of base slab/ pyramid/ block. Structure design of chimney shall be suitable for maximum bending moments due to side thrust in transverse and longitudinal directions combined with uplift (tension), down thrust (compression). The combined uplift and bending shall determine the requirement of longitudinal reinforcement in the chimney. The stub angle shall be embedded in the chimney to its full depth and anchored to the bottom slab/ pyramid. The chimney shall be designed considering the passive resistance of soil leaving 500 mm from ground level.

Design of foundation based on stub embedded in the chimney for required development length alone and the same is not taken to bottom of the foundation, is not permitted.

Structural Design of Base Slab

The base slab in RCC foundation may be single stepped or uniform. The design of concrete foundation shall be done as per Limit state method of design given in IS: 456.

Criteria for Structural Design of Foundation

- a) Isolated identical footings shall be provided for each leg of the tower.
- b) All foundations shall be designed so as to satisfy and meet the following requirements:
 - i) The chimney of the foundation shall at least be 400 mm square providing a minimum clear concrete cover of not less than 100 mm over any part of the stub angle in case of dry foundations and at least 450 mm square with minimum clear concrete cover of not less than 150 mm over any part of the stub angle in case wet, fully submerged foundations.
 - ii) The chimney top shall extend 500 mm (Minimum) above ground level and coping shall be up to 50 mm below the joint between the bottom bracing and the leg members.
 - iii) In all foundations, a lean concrete sub-base having a thickness of 100 mm and of size equal the concrete pyramid base/ RCC shall be provided under structural concrete. The lean concrete shall be of grade M-10 (1:3:6) conforming to IS: 456-2000. The lean concrete sub-base provided under the footings shall not be considered in the structural calculations.
 - iv) The embedded end of the stub angle shall have a 150 mm thick clear concrete cover up to the top of the lean concrete sub-base in the case of dry foundations and a 200 mm thick clear concrete cover in the case of wet, partially submerged and fully submerged foundations.
 - v) The depth of foundation below ground level shall not be more than 3.0 m.
 - vi) The centroidal axis of the stub shall coincide with axis of the chimney and pass through the centre of the footing base. The design of the foundation shall take into account the additional forces resulting from eccentricity introduced due to non-compliance of above requirements.
 - vii) Wherever reinforcement is provided in foundation, the clear concrete cover to reinforcement shall not be less than 50 mm.
 - viii) The slab type isolated RCC foundations shall also satisfy and meet the following requirements:
 - The structural design of foundations shall be strictly in accordance with IS: 456-2000 and other relevant IS codes.
 - The design of RCC foundations shall be carried out by Limit state method in accordance with IS: 456-2000.
 - The minimum thickness of footing slab at chimney perimeter shall not be less than 300

Kohalpur Nepalgunj 132 kV TLP

mm.

- The minimum thickness of footing slab at the edges shall not be less than 150 mm as specified in IS: 456-2000.
- In the design of the footing slabs, actual soil pressure under the footing shall be considered to calculate the maximum moments and shears at various sections. The critical sections for moments and shears shall be as specified in IS: 456-2000. The reinforcement in the footings shall be accordingly calculated and provided.

5.3 Design loads

The loads used to design the foundations shall be actual loads applied to the foundations by the towers.

The foundations shall be designed in such a manner that the factors of safety shall not be less than the following requirements:

Types of loads on foundations

The foundation may be subjected to three types of forces (ultimate loads):

- Compression or downward thrust
- · Tension or uplift, and
- Lateral force or side thrust in both transverse and longitudinal directions.

The magnitudes of each of type of load depend on the type of tower and configuration of the transmission lines.

Partial Factors of safety for foundation design

a) Towers up to an angle of 15 deg deviation 1.1

b) Towers above an angle of 15 deg deviation 1.2

Weight of concrete (kg/m³)		Dry	Wet, PS and FS
1.	Plain (M10)	2240	1240
2.	RCC (M15)	2400	1400
3.	RCC (M20)	2400	1400

S.N	Type of Soil	Angle of Earth Frustum. (deg)		Limit Bearing Capacity (kg/cm²)
1	Normal Dry Soil			
	Without Under-cut	30	1440	25,000
2.	wet soil due to presence of sub	15	940	12,500

Procurement of Plant

Kohalpur Nepalguni 132 kV TLP

	soil water / surface water			
3.	Black Cotton soil (a) in dry portion (b) in wet portion	0	1440 940	12,500 12,500
4.	Sandy soil (a) with clay content 0-5% (b) with clay content 5-10%	10 20	1440 1440	25,000 25,000
5.	Fissured Rock / Soft Rock (b) In wet portion	10	940	62,500
6.	Hard Rock	-	-	1,25,000

Unless specified otherwise, design and details shall comply with the latest published editions of BS /IS 6403, IS456, IS 1786, CBIP Tower manual or with other standard specifications provided they are of equal or higher standard. Support foundation designs which in the opinion of the Employer or Employer's representative do not demonstrate an acceptable type of foundation for the type of soil condition will be rejected.

5.4 Foundation type

In some section of the proposed transmission line, water level of terrain is high. In such cases the foundation is to be designed for fully submerged condition. If required by the Employer, the Contractor shall construct embankments for tower sites where footings are located in standing water of sloughs, pot holes and marshes. No separate payments shall be made for such embankments.

Reinforced cement concrete footing shall be used for all types of normal towers/ extension towers in conformity with the present day practices followed in the country and the specifications laid herein. All the four footings of the tower and their extensions, if any shall be similar irrespective of down thrust and uplift.

Foundation includes supply of materials such as cement, fine and coarse aggregates, water, reinforcement steel and binding wire etc. Rates quoted for foundations shall include all items of work relating to supply and installation of foundations such as form work, excavation and back filing with good soil, compaction, stub setting, shoring & timbering etc. where ever required, placing of reinforcement in position, concreting and all other works related for completion of foundation.

Classification of Foundations

General Classification of Foundations

The foundation classification shall depend upon the type of soil, subsoil water level and the presence of surface water which have been classified as follows:

a. Dry Foundation

To be used for locations where normal dry cohesive or non- cohesive soils are met and sub- soil water is met at 3.5 meters or more below the ground level

b. Wet Foundation

To be used for locations:

i. Where sub- soil water is met at 1.5 meters or more below the ground level.

Kohalpur Nepalguni 132 kV TLP

ii. Which are in surface water for long periods with water penetration not exceeding one meter below the ground level e.g. the paddy fields.

c. Fully Submerged Foundation

To be used at locations where sub-soil water is met at less than 1.5 meters below the ground level.

d. Dry Fissured Rock Foundation

To be used at locations where decomposed or fissured rock, hard gravel, kankar, limestone, laterite or any other soil of similar nature is met and sub- soil water is met at 3.5 meters or more below the ground level. Under cut type foundations is to be used for this Foundation.

e. Wet Fissured Rock Foundation

To be used at locations where decomposed or fissured rock, hard gravel, kankar, limestone, laterite or any other soil of similar nature is met and sub- soil water is met at 1.5 meters or more below the ground level. Under cut type foundations is to be used for this Foundation.

f. Hard Rock Foundation

The locations where chiselling, drilling and blasting is required for excavation, hard rock type foundations are to be used. For these locations rock anchoring is to be provided to resist the uplift forces.

For quoting prices of Hard Rock foundations Rock level shall be assumed at 1.5 meters below the ground level. Due to change in Rock level, no extra payment shall be payable on account of increase in concrete volume, excavation volume and weight of reinforcement, also no recovery shall be made if the actual volume of concrete, excavation and weight of reinforcement are less than that quoted in Schedule of prices. However, for design purpose, Rock level shall be considered at ground level and no over burden soil weight shall be considered for resisting the uplift.

- g. In addition to above, if required, depending on the site conditions special type foundations shall also be provided by the Contractor suitable for intermediate conditions under the above classifications to affect more economy for following reasons:
 - Shallow Depth or Raised Chimney foundations are necessarily required to suit the site condition or
 - b) Soil properties as per the soil report at particular location are found inferior than that considered in design. However, in case, soil properties as per soil report are found superior than that considered in design, no change in foundation design/ price shall be applicable.

The proposal for special foundations shall be submitted by the Contractor based on the detailed soil investigation report to suit site conditions and approval for the same shall be obtained from the Employer. Decision of the Employer shall be final and binding with respect to requirement of special foundation.

Payment for concreting and reinforcement bar for *raised chimney foundation* shall be made in accordance to unit rate as stated in BoQ. But no extra Payment of foundation excavation and back filling, shoring, formwork etc shall be made on such item.

5.5 Footings

Concrete spread footing

The foundation shall be designed to carry maximum shear loads below ground level, that is, the stub legs are not to be considered as reinforcement. Allowance shall be made for the loss of uplift resistance due to overlap of frusta where applicable. Uplift foundations shall be cast against undisturbed soil for a minimum height of 250 mm and 50 mm lean concrete.

For the purpose of bidding the Bidder shall design each type of foundation with the value of soil bearing capacity as stated in Foundation Application Schedule.

Kohalpur Nepalguni 132 kV TLP

These are only reference values and are taken from similar type of soil location from nearby site. After award of contract the Contractor shall carry out detail soil test of support site and shall design each type of support foundation accordingly. No extra payment will be made for change in the quantity of concrete/ rebar and other associated works due to change in design parameters.

Pile Foundation

This type of foundation is usually adopted when soil is very weak and has very poor bearing capacity or foundation has to be located in filled up soil or tower are to be erected in the land which is prone to flash flood. Piles are long and slender members which transfer load to the deeper soil or rock of high bearing capacity avoiding the shallow soil of low bearing capacity.

The piles should be cast in place fast setting concrete which should have 28 day cubical compressive strength of 210 kg/sq.cm.

The pile should be designed for the pile diameter of 900mm.

Piles in a footing should be firmly connected by horizontal tie beam of minimum 900x900mm sizes with adequate reinforcement which should be 1.5m above the existing ground level.

Though NEA has not envisaged the need of Pile foundation in this route, incases need is seen after soil test, separate cost estimate along with design should be provided by contractor for approval without any extra cost for such design and estimation.

All arrangement for anchor plate (or any other arrangement) with anchor bolts etc whichever is appropriate for the connection of the tower legs to the foundation shall be in the scope of the pile foundation.

Spread foundation in hard rock

The rock which cannot be excavated using normal tools and require chiseling, drilling and blasting are classified as hard rock. These include hard sand stone, quartzite, granite, basalt, marble etc.

The foundation in hard rock shall be designed to carry maximum shear loads below ground level, that is, the stub legs are not to be considered as reinforcement. Allowance shall be made for the loss of uplift resistance due to overlap of frusta where applicable. The footing should be safe against overturning. In case if it is unsafe against overturning, appropriate measures (e.g. counter weight) should be provided.

5.6 Stub Angle Anchor

Stub Angle

Tower Stub angles shall be of galvanized steel and shall have cross-sectional area of not less than the structure leg member to which it will be attached. The stub angle shall not be included in the calculation of the steel reinforcement requirements against bending and tension forces in concrete foundation design.

Only those holes in the stub which have been previously punched and galvanized at the manufactures works will be used for the attachment of cleats. Site drilling will not be permitted.

Stub setting template

Stub setting templates, to approval of Employer or Employer's representative, shall be provided by the Contractor. They shall be of such design and construction as to resist distortion and damage and withstand repetitive use. They shall be manufactured from mild steel angle or channel or a combination of both, of approved and adequate cross- section, and shall be equipped with central alignment notches or holes corner braces, riser braces, and stub-angles in respect of the following requirements:

Kohalpur Nepalguni 132 kV TLP

- Route longitudinal center line
- Structure lateral central line
- Stub elevations (with reference to datum)
- Stub leveling
- Stub rake
- Stub hip bevels
- Stub angle spacing

No concreting shall be commenced before the stub setting is approved by the Employer or Employer's representative. After the completion of Works all the template sets shall be handed over to Employer. No extra payment for the design, manufacturing and delivery for the templates shall be claimed by the Contractor.

5.7 Excavation and Backfilling

Scope

This specification covers the general requirements of earthwork in excavation in different materials, filling back around foundations, conveyance and disposal of surplus spoils or stacking them properly as shown on the drawings and as directed by the Employer or Employer's representative and all operations covered within the intent and purpose of this specification.

General

- a. The Contractor shall furnish all tools, plants, instruments, qualified supervisory personnel, labor, materials, any temporary works, consumable, and everything necessary, whether or not such items are specifically stated herein, for completion of the job in accordance with specification requirements.
- b. The Contractor shall carry out the check survey of the site before excavation and set properly all lines and establish levels for foundations.
- c. The excavation shall be done to correct lines and levels. This shall also include, where required, proper shoring to maintain excavations and also the furnishing, erecting and maintaining of substantial barricades on ground excavated areas and warning lamps at night for ensuring safety.
- d. The item also includes for dumping of excavated materials in regular heaps, bunds, riprap with regular slopes as directed by the Employer or Employer's representative, within the lead specified and leveling the same so as to provide natural drainage. Rock/nSoil excavated shall be stacked properly as directed by the Employer or Employer's representative. As a rule, all softer material shall be laid along the center of the heaps, the harder and more weather resisting materials forming the casing on the sides and the top. Rock shall be stacked separately.

e. Clearing

The area to be excavated/ filled shall be cleared of trees, plants, logs, stumps, bush, vegetation, rubbish, slush etc. and other objectionable matter. If any roots or stumps of trees are met during excavation, they shall also be removed. The materials so removed shall be burnt or disposed-off as directed by the Employer. Where earth fill is intended, the area shall be stripped of all loose/ soft patches, topsoil containing objectionable matter/ materials before filling commences.

f. Precious object, relics, objects of archeological importance

All gold, silver, oil, mineral, archeological and other findings of importance, trees cut or other materials of any description and all precious stones, coins, treasures, relics, antiquities and other similar things which may be found in or upon the site shall be the property of the Employer and Contractor shall duly preserve the same to the satisfaction of the Employer and from time to time deliver the same to such person or persons as the Employer may from time to time authorize or appoint to receive the found goods.

Kohalpur Nepalguni 132 kV TLP

- g. The Contractor shall excavate earth, rock, stumps and all other materials encountered as required for construction of each foundation. The Contractor shall place all suitable excavated material in backfill or in graded embankment in the immediate area at structures. Materials found to be unsuitable for foundation backfill or grading shall be wasted and disposed at Contractor's own cost.
- h. The Contractor shall excavate each foundation hole to the nominal excavation depth for the applicable foundation type except in case where the material being excavated is not capable of supporting 0.5 kg/sg.cm.
- i. At the nominal excavation depth, the foundation shall be carefully graded to a level plane and all loose or disturbed material shall be removed. The foundation excavation shall then be examined by the Contractor and a final determination will be made on the foundation type to be used.
- j. Excavations shall be maintained in a clean, safe and sound condition until completion of the foundation construction and shall be diked to prevent flooding by surface runoff. Suitable pumping equipment shall be provided and used to dewater excavations so that all installation work and backfilling is performed in the dry state. Any previously prepared foundation bearing surface that is softened by water runoff or otherwise contaminated before placement of the structure foundation shall be excavated and replaced at the Contractor's expense.
- k. Those excavations where the base is unstable, lies below groundwater level, or has been over excavated, the Contractor shall furnish and place a layer of crushed stone, or selected backfill, or borrow to stabilize the base for placement of foundation materials. No extra payment shall be done for over-excavation and backfilled crushed stone layer.
- I. Topsoil and excavated material that is suitable for backfill around the foundations shall be stockpiled separately for use in backfill. Material that is unsuitable for backfill shall be disposed of. The stockpiles shall be sloped to drain and shall be protected from rainfall or other elements, which render the material unsuitable for backfill.
- m. Backfill shall be placed in not greater than 20cm lifts before compaction. Each lift shall b thoroughly compacted before the following lift is placed. Pneumatic or equivalent tampers shall be used on cohesive materials; vibratory compactors shall be used on non-cohesive materials. Compaction shall achieve a density at least equal to that of the surrounding undisturbed earth. Large stones or rock fragments may be used in the backfill provided they do not interfere with proper compaction. Particles larger than 25 cm shall be placed not nearer than 0.5 m of the structure and at least 1.0m below ground surface.
- n. Rock particles larger than 10 cm shall not be in contact with the concrete.
- o. Following completion of 75 percent of the compacted backfill portion, the remaining backfill and topsoil shall be placed and the topsoil mounded 30 cm above the ground surface and sloped to drain. Compaction of this material will not be required. Before final acceptance of the Works, the Contractor shall refill any locations that settle below the surface of the surrounding ground.
- p. Earth is defined as material which shall include all kinds of soil containing gravel, sand, silt, moorum or shingle, gravel, clay, loam, peat, ash, etc. which can generally be excavated with the aid of shovels and pick axes. This shall also include embedded rock boulders not longer than one meter in any direction and not more than 200 mm in any of the other two directions.
- q. Rock is defined as material which shall include rock, boulders, shale, chalk, slate, hard mica, schist, laterite and all other materials which in the opinion of the Employer is rock and can be removed with picks, hammer, wedges, crowbars, pneumatic breaking equipment and blasting. This category shall also include excavation in macadam and tarred roads and pavements.

Procurement of Plant

Kohalpur Nepalguni 132 kV TLP

r. Rock excavation may be made by drilling, barring, wedging, or compressed-air tools. No blasting will be permitted. The Contractor shall furnish all material and equipment to perform all work required for excavation of rock.

For selection of rock type foundation for any tower location, the characteristics of rock shall be thoroughly investigated by the Contractor. Disintegrated rock or other types of rock such as soluble limestone, soft shale, slate, hard pan and organic rocks may not be suitable for construction of rock foundation.

s. All loose boulders, semidetached rocks (along with earthy mounds) not directly in the excavation area but so close to the area to be excavated as to be liable, in the opinion of the Employer, to fall or endanger the workman, equipment or the Works, shall be stripped off and removed away from the area of the works. Any material not requiring removal as contemplated in the work, but which in the opinion of the Employer is likely to become loose or unstable later, shall also be promptly and satisfactorily removed as directed by the Employer.

Payment:

No separate or direct payment will be made to the Contractor for preparation of site, excavation, and backfill and rock excavation of tower foundation. All costs of soil and rock excavation incurred in connection therewith shall be included in the unit bid prices for the construction of the various foundation types.

5.8 Dewatering

Scope

This specification covers the general requirements of dewatering during excavations in general.

a. All excavations shall be kept free of water. Grading in the vicinity of excavations shall be controlled to prevent surface water running into excavated areas.

The Contractor shall remove by pumping or other means approved by the Employer or Employer's representative any water inclusive of rainwater and subsoil water accumulated in excavation and keep all excavations/trenches free of water required for further work.

Method of pumping shall be approved by the Employer or Employer's representative; but in any case, the pumping arrangement shall be such that there shall be no movement of subsoil or blowing-in due to differential head of water during pumping. Pumping arrangements shall be adequate to ensure no delays in construction.

b. When there is a continuous inflow of water and quantum of water to be handled is considered in the opinion of the Employer as large, well- point system- single stage or multistage shall be adopted. The Contractor shall submit to the Employer his scheme of well-point system including the stages, the spacing number and diameter of well points, headers, etc., and the number, capacity and location of pumps for approval.

Payment

No separate or direct payment will be made to the Contractor for dewatering of tower foundation and any other foundation works. All costs incurred in connection therewith shall be included in the unit bid prices for the construction of the various foundations and other civil works.

5.9 Timber Shoring

Scope

This specification covers the general requirements of timber shoring for open excavations for structure foundation.

Kohalpur Nepalgunj 132 kV TLP

- a. Close timbering shall be done by completely covering the sides of the pits generally with short, upright members called polling boards. These shall be of minimum 25 cm x 4-cm sections or as directed by the Employer or Employer's representative.
 - The boards shall generally be placed in position vertically side by side without any gap on each side of the excavation and shall be secured by horizontal walling of strong wood at maximum 1.2 meters spacing, strutted with bellies or as directed by the Employer or Employer's representative. The length of the bellies struts shall depend on the excavation and supported by vertical walling, which in turn shall be suitably strutted. The lowest boards supporting the sides of the trench or pit shall remain exposed, so as to render the earth liable to slip out.
- b. Timber shoring shall be 'close' or 'open' type, depending on the nature of soil and the depth of pit. The type of timbering shall be as approved by the Employer. It shall be the responsibility of Contractor to take all necessary steps to prevent the sides of excavations, pits, etc., from collapsing.
- c. Timber shoring may be required to keep the sides of excavations vertical to ensure safety of adjoining structures or to limit the slope of excavations, or due to space restrictions or for other reasons. Such shoring shall be carried out, except in an emergency, only under instruction from the Employer.

Payment

No separate payment will be made to the Contractor for timber shoring. All costs incurred in connection therewith shall be included in the unit bid prices for the construction of the various foundation types and other civil works.

5.10 Select Borrow

- a. Where the material excavated for the foundation is unsuitable for backfill or is required for construction of embankment, the Contractor shall provide and compact select borrow. Excavated material shall be disposed at the Contractor's own expense.
- b. Material for select borrow shall be well-graded bank-run gravel, relatively free from clay, loam or vegetation matter and with no stones over 10 cm in maximum dimensions, or materials of equivalent strength and characteristics. Representative sample from proposed borrow sources shall be submitted to the Employer for approval of the borrow source. Approval of borrow source shall not mean automatic approval of all materials obtained from that source.
- c. The Contractor shall, at his option, use areas approved by the Employer or Employer's representative for production of select borrow or at his own expense, make arrangements for obtaining select borrow at other sources.
- d. The select borrow shall be placed and compacted as specified for the backfill in Article 5.7 Excavation and Backfilling.

Payment:

No separate payment will be made to the Contractor for select borrow required for back filling tower foundation. Hence, all costs incurred in connection therewith shall be included in the unit bid prices for the construction of the various foundation types and other civil works.

5.11 Foundation Construction

General requirement

All materials and labor required for the construction of foundations shall be furnished by the Contractor.

Kohalpur Nepalgunj 132 kV TLP

- a. The Contractor will be required to remove and replace at his expense any materials incorporated in the work that do not conform to these specifications.
- b. The Contractor shall furnish without any extra cost all materials the Employer require for testing. The cost of the tests shall be borne by the Contractor.
- c. The final selection of the type of foundation footing to be actually constructed for each particular structure will be done by the Contractor after the results of the sub soil tests and shall be subject to the approval of the Employer.

Measurement for Foundation Payment

Measurement for payment for the Contract item, Foundations, shall be on the basis of the actual number of each type of structure foundations constructed by the Contractor.

Payment

Payment for the contract item, "Foundation", will be made at the unit price per tower, such unit price shall include full compensation for all costs incurred in furnishing all materials, equipment and labor and all other operations related to Foundation design and construction, including but not limited to:

- i) Performing detail foundation design and preparation of construction drawings.
- ii) Supply and transporting all foundation materials such as concrete, reinforcement, etc to the job site.
- iii) Tower pegging and foundation orientation.
- iv) Excavation, dewatering, timber shoring and backfilling for the foundation.
- v) Gravel packing in the base of footings, where necessary.
- vi) Template and stub setting
- vii) Lean concrete
- viii) Construction of foundations and associated works.

Reference to standard specifications

Standards referred to in these specifications are as follows:

- a. ASTM referred to the latest edition of publications of American Society for the Testing and Materials, 1916 Race Street, Philadelphia, Pennsylvania 19103.
- b. ACI refers to the latest edition of publications of American Concrete Institute, P.O. Box 19150, Redford Station, and Detroit, Michigan 48219.
- BIS referrers to the latest ,Bureau of Indian Standard Manak Bhawan, 9. Bahadur Shah Zafar Marg, New Delhi India.

Measurement Standards

Measurement standards referred to in these specifications are as follows:

- a. Gallons Wherever used in these specifications, gallons shall be understood to be U.S. gallons.
- b. Bag Wherever used in these specifications, bag will be understood to mean 50-kg bag of Portland cement. Concrete shall be composed of cement, sand, coarse aggregate, water and admixtures, if required, all well mixed and brought to the proper consistency.

Concrete

Kohalpur Nepalgunj 132 kV TLP

The Contractor shall design and test concrete mixes, which have 28-day cubicle compressive strength of 210 kg/ sq.cm.

- a. At least one month prior to the placement of any concrete, the Contractor shall make a set of test concrete compressive strength test cubes for each design mix under field conditions. The test cubes shall be made and tested in accordance with the applicable standards.
- b. The concrete mix shall be of such proportions as to produce a plastic and workable mix which will not separate during the placing and will finish well without using excessive quantities of mixing water. Addition of water to compensate for stiffening of concrete before placing will not be permitted. Uniformity in concrete consistency from batch to batch will be required.
- c. After the test results are known for the field condition test cubes, the Contractor shall submit these result to the Employer or Employer's representative and the Employer or Employer's representative will notify the Contractor of the approval of test results and the acceptable design mixes.
- d. When placing concrete in hot weather, the recommendations of the American Concrete Institute's publication "Recommended Practice for Hot Weather Concreting"(ACI 605) or equivalent shall be followed insofar as the Employer or Employer's representative may direct.

The use of set accelerators will be at the Employer's or Employer's representative's discretion. For concrete placed during extremely hot weather, the aggregate shall be cooled by frequent water spraying in such a manner as to utilize the cooling effect of evaporation. Concrete with a temperature of 35 degree centigrade or higher before placement will be rejected and shall be wasted at the Contractor's expense.

e. Submerge concrete

Concrete to be placed under water shall be deposited by tremie, and only after it has been determined by the Employer or Employer's representative that placing of concrete in an unwatered excavation cannot be practically accomplished by any other means. The tremie will not be allowed to drop below the level of water outside. Under no circumstances will concrete be allowed to drop through water within the tremie.

The tremie shall be watertight and sufficiently large to permit a free flow of concrete. The bottom of the tremie shall be as near to the surface against which the concrete is to be placed as practicable and the tremie shall not be raised until seal has been established by the concrete sufficiently to prevent the entry of water of the tremie. The discharge of the tremie shall be kept submerged in concrete at sufficient depth so as to maintain an adequate seal during underwater placement. Placing of concrete shall proceed without interruption until underwater placing in the foundation has been accomplished. As placing of concrete under water progresses, the Contractor shall remove water displaced by the concrete when the top of the concrete being placed by tremie reaches the elevation of the water table level; no further placement by tremie shall be performed.

- f. The concrete used as lean concrete or base concrete shall be as mentioned on respective drawings. The aggregate size shall be 40 mm nominal. Base concrete shall be well compacted. The top surface of base concrete shall be leveled before placing the reinforcement.
- g. During excavation, if excavation exceeds the required depth or if any loose pocket of earth is met below the base of footing, then the loose earth shall be removed or excavation depth be increased till normal hard soil is met as per satisfaction of the Employer. This extra depth shall be filled with lean concrete. No extra shall be paid on account of this extra excavation and lean concrete.
- h. The cement concrete used for foundation shall be of grade M-20 (1:1.5:3) nominal Mix (1:1.5:3) conforming to IS 456 using 20mm size coarse aggregate shall be adopted.
- i. The Water Cement ratio shall be minimum 0.50 and maximum 0.55.
- j. For volumetric use of ingredients for concrete mix, the contractor along with the Mix Design shall intimate the size of measuring boxes along with the Mix design.

Kohalpur Nepalguni 132 kV TLP

- k. The nominal of Mix Design shall not absolve the contractor from the responsibility of achieving the required strength, workability etc. during actual execution. In case of failure of concrete samples, the work done is liable to be rejected. In such case the contractor shall recast the foundation at the same location by dismantling the rejected foundation or at a nearby location as directed by the Employer. In case of honey combing, the contractor shall do the pressure grouting as directed and to the full satisfaction of the Employer. The construction of new foundation in place of rejected one and pressure grouting if done shall be without any extra payment.
- I. The water used for mixing concrete and for curing purpose shall be fresh, clean and free from oils, acids and alkalis, organic materials or other deleterious substance. Potable water is generally preferred. Saltish or brackish water shall not be used. Water used shall conform to clause 5.4 of IS 456.

Cement and Aggregates

In locations where conditions do not require high sulphate resistance, cement shall conform to the requirements of ASTM C150 Type T or equivalent(IS263, IS8112,IS12269)

- a. In locations where, in the opinion of the Employer or Employer's representative, the conditions require the use of high sulphate resistance cement, cement conforming to the requirements of ASTM C150 Type V or equivalent shall be used. No extra payment will be made to the Contractor for the use of high sulphate resistance cement.
- b. The aggregates shall consist of clean, natural material or, subject to the approval of the Employer or Employer's representative, manufactured aggregates may be used.
- c. Aggregates shall be separated into sand and coarse aggregate before being used. The Employer or Employer's representative will permit no pit or crusher run materials without prior approval.
- d. Natural fine aggregate or sand shall be graded within the following limits and the fineness module be between 2.5 and 2.8 as per IS 383:

Sieve size		Amounts Finer than Each weight Percent	
Laboratory (U.S Std. Sieve)			
3/8	(9.5mm)	100	
4	(4.75mm)	95 to 100	
8	(2.36mm)	80 to 100	
16	(1.18mm)	50 to 85	
30	(600 micron)	25 to 60	
50	(300 micron)	10 to 30	
100	(150 micron)	2 to 10	

Natural coarse aggregate shall be graded within the following limits, depending upon the clear spacing between reinforcing bars.

U.S. Star	ndard Sieve	Nominal 1-1/2"	Nominal 3/4" (19mm)
2"	(50.8mm)	100	

Kohalpur Nepalguni 132 kV TLP

U.S. Standard Sieve		Nominal 1-1/2"	Nominal 3/4" (19mm)
1-1/2"	(25-38mm)	95-100	
1"	(25mm)	70-95	100
3/4"	(19mm)	35-70	90-100
3/8"	(9.5mm)	10-30	20-55
No.4	(4.75mm)	0-5	0-10
No.8	(2.36mm)		

Slump

All concrete used shall have a slump of maximum 120 mm and minimum 75 mm at the time of placing. The water cement ratio shall be determined by consideration of the specified strength, the water reducing admixtures, the slump required for proper placement, air entraining requirements the available and maximum allowable aggregate size and its specific gravity, and the amount of water carried on the aggregates.

The slumps and maximum sizes of aggregate as well as, the computation of trail mixes shall be as described in the America concrete Institute Recommended Practice for Selected Proportions for concrete (ACI 613).

Storage of material

Cement and aggregates shall be stored at the Site of the work in such manner as to prevent deterioration or intrusion of foreign matter in Contractor's own cost. Special care shall be taken in storing cement to keep it thoroughly dry at all times.

- a. Cement that has been caked in storage is still usable only if, when pressed between the thumb and fingers, it powders readily. Otherwise, its use will not be permitted.
- b. When reinforcing steel is delivered to the job site in advance of the Contractor's requirements, the Contractor shall provide suitable protection in order to prevent rust developing on the reinforcing steel as it will be Contractor's responsibility to remove the rust.

Concrete mixing and placing

Before any concrete mixing is begun, all equipment for mixing, transporting and debris shall be cleaned of all dirt and debris. All dirt and debris shall also be removed from the places to be occupied by the concrete.

- a. All mechanical equipment shall be checked before starting a concrete pour to ascertain whether or not it is in good operating condition and if not shall be tuned-up, or repaired, or replaced to the satisfaction of the Employer or Employer's representative. Also the stock of construction material (cement, aggregate and sand) shall be checked before starting the concreting work to ascertain whether or not it is in sufficient quantity for one foundation work.
- b. When a foundation location is ready for concrete placement, the Employer shall be notified at least 24 hours prior to concreting so that he may inspect to assure that the excavation is free of water, mud and debris; that the bottom surface of the excavation is well leveled and compacted; and where required, a crushed stone sub-base has been placed; that the reinforcing steel is properly secured in place; and that the formwork is properly braced.
- c. Rock surfaces shall be as flat as possible and projecting ridges shall be leveled off before the concrete is placed or spaces between the ridges shall have been previously filled with concrete to form a horizontal surface.

Kohalpur Nepalguni 132 kV TLP

- d. The Contractor shall see that all material that is to be embedded in the concrete has been placed before the concrete is placed. The Contractor shall be responsible for the accurate location of all embedded materials. Any work inaccurately or improperly set shall be relocated and reset at the Contractor's expense.
- e. All batching components of the concrete shall be accurately measured. Measuring on a weight basis is preferred, however, measuring on a volume basis will be allowed as long as careful controls are maintained. Weight measurements shall be made using standard batching equipment for large quantities and wheelbarrow scales for small quantities. Volume measurements shall be made in batching boxes. The batching boxes shall be as large as is practical.
- f. The batch mixer shall be rotated at a speed recommended by the manufacturer and mixing shall be continued for at least one and one-half (1-1/2) minutes after all materials are in the mixer, unless the size of the batch is over 1.2 cu.m., when additional mixing time shall be required as advised by the Employer. A mechanically-operated batch mixer shall be used for mixing unless otherwise approved by the Employer.
- g. The tempering of concrete which has partially hardened, that is, remixing with or without additional cement, aggregate or water, will not be permitted.
- h. Concrete shall be conveyed from the mixer to the place of final deposit within 30 minutes by methods which will prevent the segregation or loss of the materials. After 30 minutes of mixing the concrete shall be rejected and replaced by fresh concrete without any extra cost to the Employer.
- i. Equipment for chuting, pumping and pneumatically conveying concrete shall be of such size and design as to ensure a practically continuous flow of concrete at the delivery end without separation of the materials. The chutes shall never be on a slope that is steeper than two vertical to three horizontal. Conveying equipment shall not have any aluminum parts that come in contact with the concrete.
- j. When the concrete is to be placed on hard rock or other concrete, after the existing surface has been properly cleaned and otherwise prepared, the existing surface is to be wetted until it is saturated. The first batch of concrete placed shall be a grout obtained by omitting the coarse aggregate from the mix and reducing the water as required. The grout shall be evenly spread on the water-saturated surface and then the concrete shall be deposited continuously and as rapidly as practicable.
- k. The concreting shall be carried on at such a rate that the concrete is at all time plastic and flows readily into the spaces between the bars and so that each successive layer properly bonds with its predecessor. Successive layers shall be placed within 15 minutes of the preceding layer.
- I. When placing foundations with drops over 2 meters, hoppers and trunks must be provided of a size to allow for proper placing.
 - Not less than four hoppers of any size shall be available and used, if requested, and a sufficient number of sections of trunk shall be furnished to reach within 500 mm of the bottom of the foundation.
- m. The concrete shall be compacted during and after depositing by vibration. The concrete shall be thoroughly worked around embedded materials.
- n. All concrete must be consolidated by means of internal vibration except where the Employer has given written permission to use some other method of consolidation. The type and make of vibrator must have a speed of at least 6,000 vibrations per minute (VPM) when the machine is being supplied at its rated voltage, air pressure, etc. The Contractor shall at his own expense, furnish sufficient transformers, compressors, etc. of approved type to operate all vibrators at the voltage, pressure, etc., specified by the manufacturer.
- o. The Contractor shall always have at least two vibrators in operating condition at the location of the concrete placement.

Kohalpur Nepalgunj 132 kV TLP

The Contractor shall make one set of concrete compressive strength test cubes for each structure or as directed by the Employer or Employer's representative. There shall be three cubes to a set and the cubes shall be made in accordance with ASTM C31. Only one cube shall be made from any one batch containing less the 1/2 cubic meters of concrete. The Contractor shall also make one set of concrete compressing strength test cube for each new batch of cement purchased two week before using that cement.

After the cubes have aged at least 24 hours in the field, the Contractor shall deliver them to a location designated by the Employer where they will be tested in accordance with ASTM C39/IS 516. If two of the cubes tested at 28-day tests indicate a compressive strength of 210kg/sq.cm (3,000 psi) or more, the remaining cubes shall be discarded. If the 28-day compressive strength indicates a compressive strength of less than 210kg/sq.cm., the Employer or Employer's representative will determine what remedial measures are necessary and the Contractor shall perform the remedial measures at his own expense. The remedial measures may include, but are not limited to, the replacement of the entire foundation. Payment of foundation works shall only be initiated after submission of satisfactory cube test report to the satisfaction of the Employer.

Concrete formwork

Forms shall be used, wherever necessary, to confine the concrete for structures and shape it to the required lines, or to insure against contamination of the concrete by materials caving or sloughing from adjacent surfaces left by excavation.

- a. Forms shall have sufficient strength to withstand the pressure resulting from placement and vibration of the concrete, and shall be maintained rigidly in position. Forms shall be sufficiently tight to prevent loss of mortar from the concrete. Molding strips shall be placed in the corners of forms so as to produce chamfered edges on permanently exposed concrete surfaces. All exposed surfaces may be formed with any material of adequate strength and tightness to hold the wet concrete in proper position and prevent the loss of mortar.
- b. If plywood or steel forms are not readily available, the Contractor with Employer's special recommendation may substitute wood planking provided exposed surfaces are rubbed to remove ridges on exposed surfaces.
- c. The Contractor shall provide templates, which firmly hold the stub angles within 10 mm of the horizontal side setting dimensions and within 5 mm of the required elevation during the placing of the concrete. Details of the templates shall be submitted to the Employer or Employer's representative at least one month before the commencement of any foundation construction. The bottom portion of the structure may be used for this purpose providing that adequate cribbing and bracing are supplied for support.
- d. Before concrete is placed, the surfaces of all forms shall be oiled with a form oil that effectively prevents sticking and will not stain the concrete surfaces. For wood forms, form oil shall consist of straight, refined, pale paraffin mineral oil. For steel forms, form oil shall consist of refined mineral oil compound.
- e. Forms shall be removed only when the strength of the concrete is such that form removal will not result in cracking, spelling, or breaking of edges of surfaces, or other damage to the concrete. Usually formwork shall be removed after 48 hours from concreting times. Any concrete damaged by form removal or otherwise shall be repaired immediately without any extra cost to the Employer.

Concrete finishing and curing

- a. The exposed top surfaces of all concrete foundation piers shall be slightly sloped to prevent the accumulation of water.
- b. Immediately after the removal of forms, the holes left by form tie rod fasteners shall be filled with mortar and all damaged or defective concrete shall be repaired or removed and replaced to the satisfaction of the Employer or Employer's representative. Improperly consolidated concrete shall be removed by chipping, and the chipped openings or recesses shall be of such depth and shape as

Kohalpur Nepalgunj 132 kV TLP

required by the Employer or Employer's representative to insure that the patching material placed in the openings or recesses will be thoroughly keyed and bonded to the concrete. "Dry pack" mortar shall be used for filling relatively deep required for the replacement of defective concrete where surface dimensions of the chipped openings or recesses are relatively large. The depth of chipped recesses for concrete patches shall extend at least 25 mm beyond the nearest reinforcing steel.

c. To ensure proper curing, all concrete shall be kept moist for a period of at least 10 days. Burlap or an equivalent material or a curing compound shall be applied over exposed concrete surfaces. The burlap shall be kept moist at all times. If the foundation is backfilled before the one-week curing time has elapsed, the burlap protection shall remain on the exposed projection.

Membrane curing compound

Membrane curing compound shall be applied uniformly by spray, leaving no pinholes or gaps, at a rate not to exceed 4.91 square meter per liter. The curing compound shall be applied after finishing operations are completed and surface moisture has disappeared. If forms are removed prior to 7 days after placing the concrete, the uncovered surfaces shall be coated with the curing compound as specified herein.

- a. Foundation shall not be backfilled before they have been inspected to see that they are free from surface defects and voids, or that the defects and voids have been properly repaired.
- b. The foundations shall not be subjected to any loads in addition to those existing at the time of the placing of the foundation concrete until the curing period has elapsed.

Torsteel Reinforcing Bar

All torsteel-reinforcing bars shall conform to the requirements of Grade fe-415 (IS:1786) and shall be fabricated in accordance with the "Manual of Standard Practice" of the Concrete Reinforcing Steel Institute.

- a. Mill scale, rust, oil and mud shall be removed from reinforcing steel by firm rubbing with burlap or equivalent treatment before the reinforcing steel is placed.
- b. The minimum center-to-center distance between parallel bars shall be two and one-half (2-1/2) times the diameter of the bars. In no case shall the clear spacing between bars be less than 25 mm nor less than one and one-third (1-1/3) times the maximum size of coarse aggregate.
- c. All torsteel-reinforcing bars shall have a protective concrete cover of not less than:
 - 50 mm on the bottoms of footings and on any surface of concrete that will be exposed to salt water.
 - 50 mm concrete exposed to weather or ground.
- d. Torsteel reinforcing bar shall be accurately located and shall be secured in position by the use of annealed iron wire of no less than No.16 gauge, and shall be supported in a manner that will keep the reinforcement away from the exposed concrete surfaces. Concrete blocks shall be used to support the reinforcing steel in the foundation mat; broken stones or wooden blocks shall not be used for supporting the reinforcing steel.

Payment

No separate or direct payment will be made to the Contractor for concrete, lean concrete, tests, form works, etc. reinforcement bars of tower foundation. All costs incurred in connection therewith shall be included in the unit bid price for the construction of the various types of towers.

5.12 Foundation Protection Works

The Contractor shall suggest for foundation protection works where needed. The Employer will evaluate and give instruction for the protection design. The Contractor shall design the protection work and submit design of such protection works for Employer's or Engineer's approval.

Kohalpur Nepalgunj 132 kV TLP

5.12.1 Random rubble stone masonry including excavation (1:5 cement concrete)

The stone shall be hand placed with uncoursed close joints to the lines and grades as designed. The rubble stone shall be placed with 1:5 cement mortar after having joints thoroughly moistened. The surface joints shall be finished with 1:3 cement mortar.

After completion of masonry wall, it shall be cured with water for more than 10 hrs.

Weep-holes with Perforated Poly Vinyl Chloride (PVC) pipes of 10 cm in diameter shall be made in each 2 sq. m. of slope surface of the masonry wall or as required by site conditions. The upper surface of the masonry wall shall be finish smooth with concrete. The perforated pipe shall be extended at least 30 cm both ends from the stone masonry wall & in the backfilling end the perforated PVC shall be covered with gravel at least 30 cm in all-around.

The sides of the stone masonry wall should be backfilled, compacted and leveled as directed by Engineer.

Payment:

Measurement for payment of Random rubble stone masonry works shall be made on the basis of actual placed volume of stone masonry in cubic meters. Payment shall be made for the number of cubic meters measured as provided at the unit price specified in the schedule. The unit price shall include all labor, tools and equipment, materials including furnishing, transporting and placing the materials, installation of PVC pipes, excavation, gravel packing and all other cost necessary for the performance and completion of the work.

5.12.2 Stone bound in galvanizing wire netting (Gabion) including excavation

The standard type gabion shall be a flexible hot dip galvanized gabion of the type and size specified below. It is made of wire mesh of the type and size and selvedge as specified in the following:

- The mesh shall be hexagonal woven mesh with the joints formed by twisting each pair of wires through three and half turns.
- The size of mesh shall conform to the standard specification issued by the factory and shall be not greater than 1/3 of the smallest stone filled in the gabion.
- All wire used in the fabrication of the gabions and in the wiring operations during construction shall be "Mild steel wire", i.e. wire having average tensile strength of 44 kg/sq.mm.
- The diameter of the wire used in the fabrication of the netting shall be at least 3.0 mm depending on the design requirement.
- All wires used in the fabrication of the gabions and in the wiring operations during construction shall be hot dip galvanized.

All edges of the standard gabions including end panels and the diaphragms, if any, shall be mechanically selvedge in such a way as to prevent unraveling of the mesh and to develop the full strength of the mesh. The wire used for the selvedge shall have a diameter greater than that of the wire used to form the mesh. Wire having a diameter of 3.0 mm and the selvedge wire shall have diameter equal to or greater than 3.9 mm.

The stone for the gabion shall be taken from the quarry or river deposit material or as approved by the Employer or Employer's representative. The rock shall be of compact, firmly-bound and uniformly grain texture and absolutely weather-resistance, shall not have cracks, holes, laminations or detrimental materials. The stone blocks shall be of natural irregular cubical shape. The thin sliced blocks shall not be accepted. The size of stone shall be at least 10 cm.

The sides of the gabion wall should be backfilled, compacted and leveled as directed by Employer / Employer's representative.

The standard gabion shall have following dimension:

Length : 2.0 meter

Kohalpur Nepalguni 132 kV TLP

Width: 1.0 meter

Height: 1.0 meter

Sufficient lacing and connecting wire shall be supplied with the gabions for all the wiring operations to be carried out in the construction of the gabion work. The quantity of such wire is estimated to be 8% of the gabion supplied. The 2.4 mm lacing wire shall be used for the gabion made of wire gauge 3.0 mm.

Payment:

Measurement for payment of gabion works shall be made on the basis of actual placed volume of gabions in cubic meters. Payment shall be made for the number of cubic meters measured as provided at the unit price specified in the schedule. The unit price shall include all labor, equipment, materials, excavation, backfilling with compaction and all other cost necessary for the performance and completion of the works.

5.12.3 M20 Concrete Nominal Mix 1:1.5:3 for Protection works

Complete Concrete Works shall be performed as per Article 5.11 "Foundation construction-concrete". The concrete mix shall be as mentioned in BOQ.

Complete steel reinforcement work shall be performed as per IS 456.

Complete Form Work shall be performed as per Article 5.11 "Foundation construction-form works".

Payment:

Measurement for payment of "Concrete protection works" shall be made on the basis of actual placed volume of concrete in cubic meters. Payment shall be made for the number of cubic meters measured as provided at the unit price specified in the schedule. The unit price shall include all labor, equipment, materials, excavation, backfilling with compaction and all other cost necessary for the performance and completion of the works.

4.12.4 Benching, Slope Cutting and revetment works:

This section covers the cutting of slopes where sufficient electrical ground clearance of the line is not available. After slope cutting, revetment wall shall be constructed as directed by Engineer. Back filling of the revetment wall shall be done with leveling.

Payment:

Measurement for payment of "Slope cutting and revetment Works" works shall be made on the basis of actual cut volume of slopes in cubic meters. Payment shall be made for the number of cubic meters measured as provided at the unit price specified in the schedule. The unit price shall include all labor, equipment, materials, revetment walls and all other cost necessary for the performance and completion of the works.

Kohalpur Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 6 LINE CONDUCTOR

Kohalpur Nepalgunj 132 kV TLP

TABLE OF CONTENTS

6	LINE CONDUCTOR	2
	General	
	Conductor Specification	
	Accessories of Line Conductor	
6.4	Tests	7
6.5	Standards	8

Kohalpur Nepalguni 132 kV TLP

6 LINE CONDUCTOR

6.1 General

ACSR "BEAR" conductor for 132 kV transmission line from Kohalpur to Nepalgunj shall be fully type tested and in production for at least five (5) years.

6.2 Conductor Specification

All conductors shall be of aluminum conductor steel reinforced (ACSR) construction and shall be manufactured in strict conformity with BS 215 (Part 2). Bidders must offer conductor from reputable and experienced manufacturers with not less than five years manufacturing experience and the manufacturers shall possess manufacturing and testing facilities for producing the offered conductor at the time of bidding.

The steel core and the first layer of aluminum of ACSR conductors shall be greased. The grease shall be of neutral type and at a temperature of 100-degree centigrade. The grease shall neither flow within nor extrude from the conductor. The grease shall retain its properties as resistance to oxidization and chemical stability at all service temperatures.

The outermost layer of all conductors shall be stranded with right hand lay.

The correct tension must be maintained on the stranding machine when spinning the cable to avoid the possibility of bird caging during stringing. Any conductor not complying may be rejected at the discretion of the Employer.

The purity of the aluminum shall be the highest commercially available and not less than 99.5%, the copper content not exceeding 0.04%. The Contractor shall submit certificates of analysis giving the percentage and nature of any impurities in the metal from which the wires are made. Aluminum wires shall be made to BS 2627 and steel wires to BS 4565.

Precautions shall be taken during the manufacture, storage and erection of steel-cored aluminum conductors to prevent the possibility of contamination by copper or other materials, which may adversely affect the aluminum. The manufacture of steel-cored aluminum conductors shall be carried out in a portion of the factory specially set aside for such purposes. Machinery previously used in the manufacture of copper or copper bearing conductors shall not be used for the manufacture of these aluminum or steel wires.

6.2.1 Conductor drum lengths

Conductors shall be supplied on drums of approved construction and the drums shall be securely battened to protect the conductor. Drum battens shall not be removed until the drum is properly mounted at the drum station on the line and battens shall be immediately refitted to the drum if any surplus conductor is left thereon.

Each drum shall be marked with length and size of the conductor and in addition, the conductor manufacturing batch number shall be inscribed on the drum. Empty drums shall become the property of the Employer and be returned by the Contractor to the Employer's stores nominated by the Employer. The maximum length of conductor shall not exceed 2 km per drum.

6.2.2 Creep of ACSR-conductors

When stringing ACSR-conductors, the creep shall be adopted into account using suitable method for stringing the conductor to a higher tension. This is expressed as a temperature difference corresponding to the estimated creep.

6.2.3 Details of ACSR Conductors

The ACSR Conductor shall generally conform to BS: 215(Part-2) /IS: 398 (Part-II) except where otherwise specified herein.

Kohalpur Nepalguni 132 kV TLP

The details of the ACSR BEAR Conductor are tabulated in schedule A.10 of section-11.

6.2.4 Joints in Wires:

a. Aluminium Wires

No joints shall be permitted in the individual wires in the outer most layer of the finished conductor. However, joints in the 12 wire inner layer of the conductor unavoidably broken during stranding provided such breaks are not associated with either inherently defective wire or with the use of short lengths of aluminium wires. Such joints shall not be more than four (4) per conductor lengths. These joint shall be made by cold pressure buttwelding and shall be such that no two such joints are within 15 metres of each other in the complete stranded conductor.

b. Steel Wires

There shall be no joint of any kind in the finished wire entering into the manufacture of the strand nor strand joint or strand splices in any length of the complete stranded steel core of the conductor.

6.2.5 Materials

The Aluminium strands shall be hard drawn from electrolytic aluminum rods having a purity of not less than 99.5% and a copper content not exceeding 0.04%. They shall have the same properties and characteristics as prescribed in IEC: 889-1987.

The steel wire strands shall be drawn from high carbon steel wire rods produced by either the acid or basic open hearth process, the electric furnace process, or the basic oxygen process and shall conform to the following requirements as to the chemical composition:

Element % composition
Carbon 0.50 to 0.85
Manganese 0.50 to 1.10

Phosphorus Not more than 0.035 Sulphur Not more than 0.045

Silicon 0.10 to 0.35

The steel wire stands shall have the same properties and characteristics as proscribed for regular strength steel wire in IEC:888-1987.

The zinc used for galvanizing shall be electrolytic high grade Zinc of 99.95% purity. It shall conform to and satisfy all the requirements of IS: 209.

6.2.6 Packing

The conductor shall be supplied in non-returnable, strong, wooden drums provided with lagging of adequate strength, constructed to protect the conductor against all damage and displacement during transit, storage and subsequent handling and stringing operations in the field. The drums shall generally conform to IS: 1778, except as otherwise specified hereinafter.

The drums shall be suitable for wheel mounting and for letting off the conductor under a minimum controlled tension of the order of 5 KN.

The Bidder should submit their proposed drum drawings along with the bid.

For conductor, one standard length not exceeding 2,000 m shall be wound on each drum.

Kohalpur Nepalguni 132 kV TLP

All wooden components shall be manufactured out of seasoned soft wood free from defects that may materially weaken the component parts of the drums. Preservative treatment shall be applied to the entire drum with preservatives of a quality which is not harmful to the conductor.

The flanges shall be of two ply construction with each ply at right angles to the adjacent ply and nailed together. The nails shall be driven from the inside face flange, punched and then clenched on the outer face. The thickness of each ply shall not vary by more than 3 mm from that indicated in the figure. There shall be at least 3 nails per plank of ply with maximum nail spacing of 75 mm. Where a slot is cut in the flange to receive the inner end of the conductor the entrance shall be in line with the periphery of the barrel.

The wooden battens used for making the barrel of the conductor shall be of segmental type. These shall be nailed to the barrel supports with at least two nails. The battens shall be closely butted and shall provide a round barrel with smooth external surface. The edges of the battens shall be rounded or chamfered to avoid damage to the conductor.

Barrel studs shall be used for the construction of drums. The flanges shall be holed and the barrel supports slotted to receive them. The barrel studs shall be threaded over a length on either end, sufficient to accommodate washers, spindle plates and nuts for fixing flanges at the required spacing.

Normally, the nuts on the studs shall stand protruded of the flanges. All the nails used on the inner surface of the flanges and the drum barrel shall be counter sunk. The ends of barrel shall generally be flushed with the top of the nuts.

The inner cheek of the flanges and drum barrel surface shall be painted with bitumen based paint.

Before reeling, card board or double corrugated or thick bituminized water-proof bamboo paper shall be secured to the drum barrel and inside of flanges of the drum by means of a suitable commercial adhesive material. After reeling the conductor, the exposed surface of the outer layer of conductor shall be wrapped with water proof thick bituminized bamboo paper to preserve the conductor from dirt, grit and damage during transport and handling.

A minimum space of 75 mm for conductor shall be provided between the inner surface of the external protective tagging and outer layer of the conductor.

Each batten shall be securely nailed across grains as far as possible to the flange, edges with at least 2 nails per end. The length of the nails shall not be less than twice the thickness of the battens. The nails shall not protrude above the general surface and shall not have exposed sharp, edges or allow the battens to be released due to corrosion.

The nuts on the barrel shall be tack welded on the one side in order to fully secure them. On the second end, a spring washer shall be used.

A steel collar shall be used to secure all barrel studs. This collar shall be located between the washers and the steel drum and secured to the central steel plate by welding.

Outside the protective lagging, there shall be minimum of two binders consisting of hoop iron/galvanized steel wire. Each protective lagging shall have two recesses to accommodate the binders.

The conductor ends shall be properly sealed and secured on the side of one of the flanges to avoid loosening of the conductor layers during transit and handling.

As an alternative to wooden drum Bidder may also supply the conductors in non-returnable painted steel drums. After preparation of steel surface according to IS: 9954, synthetic enamel paint shall be applied after application of one coat of primer. Wooden/Steel drum will be treated at par for evaluation purpose and accordingly the Bidder should quote in the package.

Kohalpur Nepalguni 132 kV TLP

6.2.7 Marking

Each drum shall have the following information stencilled on it in indelible ink along with other essential data:

- Contract/ Award letter number.
- Name and address of consignee.
- Manufacturer's name and address.
- Drum number
- Size of conductor
- Length of conductor in meters
- Arrow marking for unwinding
- Position of the conductor ends
- Distance between outer-most Layer of conductor and the inner surface of lagging.
- Barrel diameter at three locations & an arrow marking at the location of the measurement.
- Number of turns in the outer most layer.
- Gross weight of drum after putting lagging.
- Tear weight of the drum without lagging.
- Net weight of the conductor in the drum.
- Material Inspection & Clearance certificate Number.
- The above should be indicated in the packing list also.

6.2.8 Verification of Conductor Length

The Employer reserves the right to verify the length of conductor in any conductor drum to be supplied by contractor.

6.3 Accessories of Line Conductor

The following are the accessories for ACSR Bear Conductor. 2.5% extra fasteners and retaining rods shall be provided.

6.3.1 Mid Span Compression Joint

Mid Span Compression Joint shall be used for joining two lengths of conductor. The joint shall have a resistively less than 75% of the resistivity of equivalent length of conductor. The joint shall not permit slipping off, damage to, or failure of the complete conductor or any part thereof at a load less than 95% of the ultimate tensile strength of the conductor.

The joint shall be made of Steel and aluminium sleeves for jointing the conductor. The aluminum sleeve shall have aluminum of purity not less than 99.5%. If whole of the sleeve is not to be compressed, then tapered aluminium filler plugs shall also be provided on the line of demarcation between compression and non-compression zone. The steel sleeve should not crack nor fail during compression. The Brinnel Hardness of steel sleeve shall not exceed 160. The steel sleeve shall be hot dip Galvanised.

6.3.2 Repair Sleeve

Repair Sleeve of compression type shall be used to repair conductor with not more than two strands broken in the outer layer. The sleeve shall be manufactured from 99.5% pure aluminum and shall have a smooth surface. The repair sleeve shall comprise of two pieces with a provision of seat for sliding of the keeper piece.

Kohalpur Nepalgunj 132 kV TLP

The edges of the seat as well as the keeper piece shall be so rounded that the conductor strands are not damaged during installation.

6.3.3 Vibration Damper

Vibration dampers of 4R-stockbridge type with four (4) different resonances spread with the specified Aeolian frequency band width corresponding to wind speed of 1 m/s to 7 m/s shall be used at suspension and tension points on each conductor in each span to damp out Aeolian vibrations as mentioned herein after.

Alternate damping systems or offering equivalent or better performance also shall be accepted provided the manufacturer meets the qualifying requirements stipulated in the Specifications. Relevant technical documents to establish the technical suitability of alternate systems shall be furnished by the Bidder along with the bid.

One damper minimum on each side of conductor shall be used for ruling design span.

The clamp of the vibration damper shall be made of high strength aluminum alloy of type LM-6 or equivalent. It shall be capable of supporting the damper and prevent damage or chafing of the conductor during erection or continued operation. The clamp shall have smooth and permanent grip to keep the damper in position on the conductor without damaging the strands or causing premature fatigue failure of the conductor under the clamp. The clamp groove shall be in uniform contact with the conductor over the entire clamping surface except for the rounded edges. The groove of the clamp body and clamp cap shall be smooth, free form projections, grit or other materials which could cause damage to the conductor when the clamp is installed. Clamping bolts shall be provided with self locking nuts and designed to prevent corrosion of threads or loosening in service.

The messenger cable shall be made of high strength galvanized steel/ stainless steel with a minimum strength of 135 kg/sq mm. It shall be of preformed and post formed quality in order to prevent subsequent droop of weight and to maintain consistent flexural stiffness of the cable in service. The number of strands in the messenger cable shall be 19. The messenger cables other than stainless steel shall be hot dip galvanized in accordance with the recommendations of IS: 4826-1979 for heavily coated wires.

The damper mass shall be made of hot dip galvanized mild steel/ cast iron or a permanent mould cast zinc alloy. All castings shall be free from defects such as cracks, shrinkage, inclusions and blowholes etc. The surface of the damper masses shall be smooth.

The damper clamp shall be casted over the messenger cable and offer sufficient and permanent grip on it. The messenger cable shall not slip out of the grip at a load less than the mass pull-off value of the damper. The damper masses made of material other than zinc alloy shall be fixed to the messenger cable in a suitable manner in order to avoid excessive stress concentration on the messenger cables which shall cause premature fatigue failure of the same. The messenger cable ends shall be suitably and effectively sealed to prevent corrosion. The damper mass made of zinc alloy shall be casted over the messenger cable and have sufficient and permanent grip on the messenger cable under all service conditions.

The damper assembly shall be so designed that it shall not introduce radio interference beyond acceptable limits.

The vibration analysis of the system, with and without damper and dynamic characteristics of the damper as detailed under Annexure-A, shall have to be submitted by the Bidder along with his bid. The technical particulars for vibration analysis and damping design of the system are as follows.

The damper placement chart for spans ranging from 100 m to 1100 m shall be submitted by the Bidder. Placement charts should be duly supported with relevant technical documents and sample calculations.

The damper placement charts shall include the following: -

a. Location of the dampers for various combinations of spans and line tensions clearly indicating the number of dampers to be installed per conductor per span.

Kohalpur Nepalgunj 132 kV TLP

- b. Placement distances clearly identifying the extremities between which the distances are to be measured.
- c. Placement recommendation depending upon type of suspension clamps (viz Free centre type/ Armour grip type etc.)
- d. The influence of mid span compression joints, repair sleeves and armour rods (standard and AGS) in the placement of dampers.

6.4 Tests

The following acceptance and routine tests and tests during manufacture shall be carried out on the conductor. For the purpose of this clause, the following shall apply.

Acceptance tests shall mean those tests which are to be carried out on samples taken from each lot offered for pre-despatch inspection, for the purpose of acceptance of that lot.

Routine tests shall mean those tests, which are to be carried out on each strand/ spool/ length of the conductor to check requirements which are likely to vary during production.

Tests during manufacture shall mean those tests, which are to be carried out during the process of manufacture and end inspection by the manufacture to ensure the desired quality of the end product to be supplied by him.

For all acceptance tests, the acceptance values shall be the values guaranteed by the bidder in the guaranteed technical particulars of his proposal or the acceptance value specified in this specification, whichever is more stringent for that particular test.

6.4.1 Design (Type) Tests

Only type tested conductor and the equipment should be offered. Type test reports as specified in section-2 of this specification shall be submitted by the Bidder along with the bid. The type test report includes:

- a) Surface condition test
- b) Test for ultimate breaking load on stranded conductor
- c) Stress-strain test
- d) Measurement of diameter of individual aluminum and steel wires.
- e) Measurement of lay ratio.
- f) Breaking load of individual wires.
- g) Ductility test
- h) Wrapping test
- i) Resistance test and
- j) Galvanizing test

6.4.2 Acceptance Tests

- a) Visual and dimensional check on drum
- b) Visual check for joints scratches etc. and lengths of conductor by rewinding
- c) Dimensional check on steel and Aluminium strands
- d) Galvanizing test on steel strands
- e) Torsion and elongation test on steel strands
- f) Check for lay-ratios of various layers

Procurement of Plant

Kohalpur Nepalguni 132 kV TLP

- g) Breaking load test on steel and aluminum strands
- h) Wrap test on steel and aluminum strands
- i) DC resistance test on aluminum strands
- j) UTS Test on welded joint of strands

Note: All the tests except (j) shall be carried out on Aluminium and steel strands after stranding only.

6.4.3 Routine tests

- a) Check to ensure that the joints are as per specification.
- b) Check that there are no cuts, fins etc. on the strands.
- c) Check that drums are as per specification.
- d) All acceptance tests as mentioned above to be carried out on each coil.

6.4.4 Tests during manufacture

- a) Chemical analysis of zinc used for galvanizing
- b) Chemical analysis of aluminum used for making aluminum strands

6.4.5 Testing Expenses

The entire cost of testing for the acceptance and routine tests and tests during manufacture specified herein shall be treated as included in the quoted unit price except for the expenses of the inspector/ Employer's representative.

6.4.6 Test Reports

Record of routine test reports and acceptance tests shall be submitted to the Employer for approval.

Test certificates of tests during manufacture shall be maintained by the manufacturer. These shall be produced for verification as and when desired by the Employer.

6.4.7 Inspection

The representative of the Employer shall at all times be entitled to have access to the works and all places of manufacture, where conductor shall be manufactured and representative shall have full facilities for unrestricted inspection of the manufacturer works, raw materials and process of manufacture for conducting necessary tests as detailed herein.

No material shall be dispatched from its point of manufacture before it has been satisfactorily inspected and tested, unless the inspection is waived off by the Employer in writing. In the later case also the conductor shall be dispatched only after satisfactory testing for all tests specified herein have been completed and the test results have been approved by the Employer.

The acceptance of any quantity of material shall in no way relieve the manufacturer and the contractor of any of his responsibilities for meeting all requirements of the specification, and shall not prevent subsequent rejection if such material is later found to be defective.

6.5 Standards

The conductor shall conform to the following Indian/ International Standards, which shall mean latest revisions, with amendments/ changes adopted and published, unless specifically stated otherwise in the Specification.

Kohalpur Nepalgunj 132 kV TLP

In the event of the supply of conductor conforming to standards other than specified, the Bidder shall confirm in his bid that these standards are equivalent to those specified. In case of award, salient features of comparison between the standards proposed by the Supplier and those specified in this document will be provided by the Supplier to establish their equivalence.

SI. No.	Indian Standard	Title	International Standard
1.	IS: 209-1992	Specification for zinc	BS: 3436-1986
2.	IS: 398-1982	Specification for Aluminium Conductors for Overhead Transmission Purposes	IEC: 1089-1991 BS: 215-1970
3.	IS: 398-1990 Part-II and IS:398-1994 Part-4	Aluminum Conductor Galvanized Steel Reinforced and All Aluminium Alloy Conductors	BS: 215-1970 IEC: 1089-1991
4.	IS: 1778-1980	Reels and Drums for Bare Conductors	BS: 1559-1949
5.	IS: 1521-1991	Method of Tensile Testing of Steel Wire	ISO 6892-1984
6.	IS: 2629-1990	Recommended Practice for Hot Dip Galvanizing of Iron and Steel	
7.	IS: 2633-1992	Method of Testing Uniformity of Coating on Zinc Coated Articles	
8.	IS: 4826-1992	Galvanized Coating on Round Steel Wires	IEC: 888-1987 BS: 443-1969
9.	IS: 6745-1990	Methods of Determination of Weight of Zinc Coating of Zinc Coated Iron and Steel Articles	BS: 433-1969 ISO 1460 - 1973
10.	IS: 8263-1990	Method of Radio Interference Tests on High Voltage Insulators	IEC: 437-1973 NEMA: 107-1964 CISPR
11.		Zinc Coated steel wires for stranded Conductors	IEC: 888-1987
12.		Hard drawn Aluminium wire for overhead line conductors	IEC: 889-1987

Kohalpur Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 7 INSULATOR AND ACCESSORIES

Kohalpur Nepalgunj 132 kV TLP

TABLE OF CONTENTS

7. INS	SULATOR AND ACCESSORIES	3
7.1	Composite Long Rod Insulator	3
7.2	Materials	∠
7.3	Dimensional Tolerance of Composite Insulators	∠
7.4	Details of Hardware Fittings	5
7.5	Ball and Socket Designation	5
7.6	Pin and Cap	5
7.7	Interchangeability	5
7.8	Security Clip	5
7.9	Corona and RI Performance	6
7.10	Arcing Horn/ Intermediate Arcing Horn	6
7.11	Yoke Plate	6
7.12	Sag-Adjustment Plate	6
7.13	Suspension Assembly	6
7.14	Fasteners: Bolts, Nuts and Washers	8
7.15	Maintenance	9
7.16	Workmanship	9
7.17	Equipment Marking	9
7.18	Bid Drawings	10
7.19	Tests	10
7.20	Packing and Marking	14
7.21	Standards	15
ANNE	XURE 7-A TESTS ON COMPLETE STRINGS WITH HARDWARE FITTINGS	17
ANNE	SYLIDE 7 R RASIC INSULATION LEVELS OF INSULATORS	10

Kohalpur Nepalguni 132 kV TLP

7. INSULATOR AND ACCESSORIES

7.1 Composite Long Rod Insulator

The composite long rod type insulators shall be fully type tested and has been in production for at least five years.

The insulators shall be of puncture-proof type. These insulators shall be made of a core with fiberglass reinforced resin and sheds of HT Silicon Rubber. They shall be of light weight and high tensile strength. They must withstand safely all operating stresses even in the presence of Ozone and UV radiation. The composite material shall be of inherent stability.

To cope with lightning over-voltages, the insulator sets have to be designed with respect to insulation coordination according to IEC 60071-1, which determine the gap between the grounded fittings and the live parts.

The insulators shall be matched with the accessories to be used. The insulator shall confirm to IEC 61109 "Composite insulators for A.C. overhead lines with a nominal voltage greater than 1000V".

Bidder shall quote such composite insulators which have proven use under foggy/ humid operational conditions. The Bidder shall furnish evidence in the form of certification from the power utilities that the similar type of product supplied to them had been performing satisfactory. The Bidder shall also submit certified test report for an accelerated ageing test of 5000 hours such as that described in Annexure-C of IEC-61109 and other type test reports.

The parameters characterizing the insulators profile shall be as follows:

Table 7.1

	Type of string	Basic Insulation Level		Creepage	No. of	Mechanical
SI. No.		Impulse Withstand Voltage (kV / peak)	Power frequency withstand voltage (kVrms)	Factor (C.F.) *	individual units per string (Nos)	strength (kN) **
1	Single "I" suspension		395	3.5	1	90
2	Single 'l' Tension	950			1	160
3	Double "I" suspension				2	2 x 90
4	Double "I" Tension				2	2 x 160

[&]quot;*"C. F. = Creepage Factor for pollution level II, as described in Appendix – D of IEC 60815. Creepage distance (mm) = C.F X Arcing Distance of insulator.

For other technical parameters of insulators, please refer to schedule A.9 in section - 11. Bidder shall submit GA drawing showing core diameter, the overall string length and other details of the insulator with the Bid.

[&]quot;**" Mechanical strength of insulator string along with hardware fittings (kN).

Kohalpur Nepalguni 132 kV TLP

Note: If type tested insulators for 750 kV peak and 950 kV peak, are not available. The bidders may propose insulators, type tested at higher BIL (1050 kV peak) normally used for 220kV system.

7.2 Materials

7.2.1 Core

It shall be a glass-fiber reinforced (FRP rod) epoxy resin rod of high strength. Glass fibers and resin shall be optimized. The rod shall be electrical grade corrosion resistant (ECR), boron free glass and shall exhibit both high electrical integrity and high resistance to acid corrosion.

7.2.2 Housing & Weather sheds

The FRP rod shall be covered by a seamless sheath of a HT-silicone rubber compound of a thickness of minimum 3mm. The housing & weather sheds should have silicon content of minimum 30% by weight. It should protect the FRP rod against environmental influences, external pollution and humidity. It shall be extruded or directly molded on the core. The interface between the housing and the core must be uniform and without voids. The strength of the bond shall be greater than the tearing strength of the polymer. The manufacturer shall follow non-destructive technique (N.D.T.) to check the quality of jointing of the housing interface with the core. The technique being followed with detailed procedure and sampling shall be furnished along with the bid. The details for this shall be finalized during detailed engineering and finalization of MQP.

The weather sheds of the insulators shall be of alternate shed profile. The weather sheds shall be vulcanized to the sheath (extrusion process) or molded as part of the sheath (injection moulding process) and free from imperfections. The vulcanization for extrusion process shall be at high temperature and for injection moulding shall be at high temperature & high pressure. Any seams / burrs protruding axially along the insulator, resulting from the injection moulding process shall be removed completely without causing any damage to the housing. The track resistance of housing and shed material shall be class 1A4.5 according to IEC60587. The strength of the weather shed to sheath interface shall be greater than the tearing strength of the polymer. The composite insulator shall be capable of high pressure washing.

7.2.3 End Fittings

End fittings transmit the mechanical load to the core. They shall be made of malleable cast iron spheroid graphite or forged steel. They shall be connected to the rod by means of a controlled compression technique. The manufacturer shall have in-process Acoustic emission arrangement or some other arrangement to ensure that there is no damage to the core during crimping. This verification shall be in-process and done on each insulator. The gap between fitting and sheath shall be sealed by a flexible silicone rubber compound. The system of attachment of end fitting to the rod shall provide superior sealing performance between housing and metal connection. The sealing must be humidity proof and durable with time.

7.2.4 Grading Rings

Grading rings shall be used at both ends of each composite insulator unit for reducing the voltage gradient on and within the insulator and to reduce radio and TV noise to acceptable levels. The size and placement of the metallic grading rings shall be designed to eliminate dry band arcing/corona cutting/ exceeding of permissible electrical stress of material. The bidder shall furnish calculations along with the proposed placement and design of corona ring in support of the above. Grading rings shall be capable of installation and removal with hot line tools without disassembling any other part of the insulator assembly.

The supply of grading rings shall preferably be in the scope of the composite insulator supplier.

7.3 Dimensional Tolerance of Composite Insulators

The tolerances on all dimensions e.g. diameter, length and creepage distance shall be allowed as follows:

± (0.04d+1.5) mm when d≤300 mm.

Kohalpur Nepalguni 132 kV TLP

± (0.025d+6) mm when d>300 mm.

Where, d being the dimensions in millimeters for diameter, length or creepage distance as the case may be. No negative tolerance shall be applicable to creepage distance.

7.4 Details of Hardware Fittings

Single suspension, Double Suspension, Single tension and Double tension hardware fittings shall be supplied suitable for attaching to hanger/ strain plate fixed to tower. Each hardware fittings shall be supplied complete in all respects and shall include the following hardware parts:

- a. Suitable arcing horn specified in hereinafter.
- b. Suitable Yoke plate complying with the specification given hereinafter.
- c. Sag-Adjustment plate for double tension hardware fittings.
- d. Suspension and dead end assembly to suit conductor size.
- e. Provision for attaching balancing weights on the line side yoke plate of single suspension pilot hardware fittings.
- f. Other necessary fittings viz D-shackles, eye links, extension links, ball clevis, socket clevis, clevis eye, U clevis and chain link etc. to make hardware fittings completer.

7.5 Ball and Socket Designation

The dimensions of the balls and sockets shall be of 16 mm designation for 90 kN & 20 mm designation for 160 kN disc insulator in accordance with the standard dimensions stated in IS: 2486 - (Part - II)/IEC:120.

7.6 Pin and Cap

Pin and Cap shall be designed to transmit the mechanical stresses and develop uniform mechanical strength in the insulator. The cap shall be circular with the inner and outer surfaces concentric, of such design that it will not yield or distort under load conditions.

The design shall be such as to permit easy removal of replacement of either insulator units or fittings under the live line conditions.

7.7 Interchangeability

The composite long rod insulators inclusive of the ball and socket fittings shall be of standard design suitable for use with the hardware fittings of any make conforming to relevant Indian/ IEC Standards.

7.8 Security Clip

Security clip for use with ball and socket coupling shall be of R-shaped hump type which shall provide positive locking of the coupling as per IS: 2486-(Part-III)/IEC: 372. The legs of the security clips shall be spread after installation to prevent complete withdrawal from the socket. The locking device should be resilient, corrosion resistant and of suitable mechanical strength. There shall be no risk of the locking device being displaced accidentally or being rotated when in position. Under no circumstances shall locking device allow separation of insulator units or fittings.

The hole for the security clip shall be countersunk and the clip shall be of such design that the eye of clip may be engaged by a hot line clip puller to provide for disengagement under energized conditions. The force required to pull the security clip into its unlocked position shall not be less than 50N (5 kg) or more than 500N (50 kg).

Kohalpur Nepalguni 132 kV TLP

7.9 Corona and RI Performance

All surfaces must be clean, smooth, without cuts, abrasions or projections. No part shall be subjected to excessive localized pressure. The insulator metal parts shall be so designed and manufactured that it shall not generate any Radio Interference beyond specified limit and not produce any noise generating corona formation under the operating conditions.

7.10 Arcing Horn/ Intermediate Arcing Horn

The arcing horn / Intermediate Arcing Horn shall be ball ended rod type.

The air gap shall be so adjusted to ensure effective operation under actual field conditions.

7.11 Yoke Plate

The strength of yoke plates shall be adequate to withstand the minimum ultimate tensile strength as specified in the bid drawings.

The plates shall be either triangular or rectangular in shape as may be necessary. The design of yoke plate shall take into account the most unfavorable loading conditions likely to be experienced as a result of dimensional tolerances for disc insulators as well as components of hardware fittings within the specified range. The plates shall have suitable holes for fixing corona control rings/ grading ring/ arcing horn. All the corners and edges should be rounded off with a radius of at least 3 mm. Design calculations i.e. for bearing & tensile strength, for deciding the dimensions of yoke plate shall be furnished by the bidder. The holes provided for bolts in the yoke plate should satisfy shear edge condition as per Clause No. 8.10 of IS: 800-1984.

7.12 Sag-Adjustment Plate

The sag-adjustment plate to be provided with the double tension hardware fitting shall be of three plate type. The sag adjustment plate shall be provided with a safety locking arrangement. The device shall be of such design that the adjustment is done with ease, speed and safety.

The maximum length of the sag adjustment plate from the connecting part of the rest of the hardware fittings shall be 520 mm. The details of the minimum and maximum adjustment possible and the steps of adjustment shall be clearly indicated in the drawing. An adjustment of 150 mm minimum at the interval of 6 mm shall be possible with the sag adjustment plate.

Design calculations for deciding the dimensions of sag adjustment plate shall be furnished by bidder. The hole provided for bolts should satisfy shear edge condition as per Clause No.8.10 of IS: 800-1984.

7.13 Suspension Assembly

The suspension assembly shall be suitable for ACSR 'BEAR' Conductor.

The suspension assembly shall include free center type suspension clamp along with standard preformed armor rods or armor grip suspension clamp; except for Pilot insulator string for which only suitable Envelope type suspension clamp shall be used.

The suspension clamp along with standard preformed armor rods set shall be designed to have maximum mobility in any direction and minimum moment of inertia so as to have minimum stress on the conductor in the case of oscillation of the same.

The suspension clamp along with standard preformed armor rods/ armor grip suspension clamp set shall have slip strength for ACSR 'BEAR' Conductor.

The suspension assembly shall be designed, manufactured and finished to give it a suitable shape, so as to avoid any possibility of hammering between suspension assembly and conductor due to vibration. The

Kohalpur Nepalguni 132 kV TLP

suspension assembly shall be smooth without any cuts, grooves, abrasions, projections, ridges or excrescence, which might damage the conductor.

The suspension assembly/ clamp shall be designed so that it shall minimize the static & dynamic stress developed in the conductor under various loading conditions as well as during wind induced conductor vibrations. It shall also withstand power arcs & have required level of Corona/RIV performance.

Bids offering suspension assemblies with magnetic power loss more than 4 watts except for envelope type clamps for which magnetic power loss more than 8 watts at sub-conductor current of 600 amps shall be liable to be rejected. The Bidders are requested to enclose test certificates for magnetic power loss test along with the bid.

In case, the magnetic power loss of the suspension assembly obtained during type testing of the same exceeds the value guaranteed by the Bidder in his bid, the material shall be rejected outright or the same shall be accepted after suitable liquidated damages for non-performance calculated at the rate of US\$ 4.68 per suspension assembly for each watt of additional power loss, which shall be recovered from the contract price.

7.13.1 Free Centre Type Suspension Clamp

For the Free Center Suspension Clamp seat shall be smoothly rounded and curved into a bell mouth at the ends. The lip edges shall have rounded bead. There shall be at least two U-bolts for tightening of clamp body and keeper pieces together.

7.13.2 Standard Preformed Armor Rod Set

The Preformed Armor Rods Set suitable for ACSR 'BEAR' Conductor shall be used to minimize the stress developed in the sub-conductor due to different static and dynamic loads because of vibration due to wind, slipping of conductor from the suspension clamp as a result of unbalanced conductor tension in adjacent spans and broken wire condition. It shall also withstand power arcs. Chafing and abrasion from suspension clamp and localized heating effect due to magnetic power losses from suspension clamps as well as resistance losses of the conductor.

The preformed armor rods set shall have right hand lay and the inside diameter of the helices shall be less than the outside diameter of the conductor to have gentle but permanent grip on the conductor. The surface of the armor rod when fitted on the conductor shall be smooth and free from projections, cuts and abrasions etc.

The pitch length of the rods shall be determined by the Bidder but shall be less than that of the outer layer of conductor and the same shall be accurately controlled to maintain uniformity and consistently reproducible characteristic wholly independent of the skill of linemen.

The amour rod shall not lose their resilience even after five applications.

The conductivity of each rod of the set shall not be less than 40% of the conductivity of the International Annealed Copper Standard (IACS).

7.13.3 Armor Grip Suspension Clamp

The Armor grip suspension clamp shall comprise of retaining strap, support housing, elastomer inserts with aluminum re-enforcement and AGS preformed rod set.

Elastomer insert shall be resistant to the effects of temperature up to 75° C, Ozone ultraviolet radiations and other atmospheric contaminants likely to be encountered in service. The physical properties of the elastomer shall be of approved standard. It shall be electrically shielded by a cage of AGS preformed rod set. The elastomer insert shall be so designed that the curvature of the AGS rod shall follow the contour of the neoprene insert.

Kohalpur Nepalguni 132 kV TLP

The AGS preformed rod set shall be as detailed in above in general except for the following.

7.13.4 Envelope Type Suspension Clamp

The seat of the envelope type suspension clamp shall be smooth rounded and suitably curved at the ends. The lip edges shall have a rounded bend. There shall be at least two U-Bolts for tightening of clamp body and keeper pieces together. Hexagonal bolts and nuts with split pins shall be used for attachment of the clamp.

7.13.5 Dead End Assembly

The dead end assembly shall be suitable for ACSR Bear Conductor.

The dead end assembly shall be compression type with provision for compressing jumper terminal at one end. The angle of jumper terminal to be mounted should be 300 with respect to the vertical line. The area of bearing surface on all the connections shall be sufficient to ensure positive electrical and mechanical contract and avoid local heating due to I²R losses. The resistance of the clamp when compressed on Conductor shall not be more than 75% of the resistance of equivalent length of Conductor.

Die compression areas shall be clearly marked on each dead-end assembly designed for continuous die compressions and shall bear the words 'COMPRESS FIRST' suitably, inscribed near the point on each assembly where the compression begins. If the dead end assembly is designed for intermittent die compressions, it shall bear identification marks 'COMPRESSION ZONE' AND 'NON-COMPRESSION ZONE' distinctly with arrow marks showing the direction of compressions and knurling marks showing the end of the zones. Tapered aluminum filler plugs shall also be provided at the line of demarcation between compression & non-compression zone. The letters, number and other marking on the finished clamp shall be distinct and legible

7.14 Fasteners: Bolts, Nuts and Washers

All bolts and nuts shall conform to IS: 6639-1972/ISO-R-272-1968. All bolts and nuts shall be galvanized. All bolts and nuts shall have hexagonal heads, the heads being forged out of solid truly concentric, and square with the shank, which must be perfectly straight.

Bolts up to M 16 and having length up to 10 times the diameter of the bolt should be manufactured by cold forging and thread rolling process to obtain good and reliable mechanical properties and effective dimensional control. The shear strength of bolt for 5.6 grade should be 310 MPa minimum as per IS: 12427. Bolts should be provided with washer face in accordance with IS: 1363 part-i/ ISO-4016-1979 to ensure proper bearing.

Nuts should be double chamfered as per the requirement of IS: 1363 Part-III, 1984. It should be ensured by the manufacturer that nuts should not be over- tapped beyond 0.4 mm oversize on effective diameter for size up to M 16.

Fully threaded bolts shall not be used. The length of the bolt shall be such that the threaded portion shall not extend into the place of contact of the component parts.

All bolts shall be threaded to take the full depth of the nuts and threaded enough to permit the firm gripping of the component parts but no further. It shall be ensured that the threaded portion of the bolt protrudes not less than 3 mm and not more than 8 mm when fully tightened. All nuts shall fit and tight to the point where shank of the bolt connects to the head.

Flat washers and spring washers shall be provided wherever necessary and shall be of positive lock type. Spring washers shall be electro-galvanized. The thickness of washers shall conform to IS: 2016-1967.

The Bidder shall furnish bolt schedules giving thickness of components connected, the nut and the washer and the length of shank and the threaded portion of bolts and size of holes and any other special details of this nature.

Kohalpur Nepalguni 132 kV TLP

To obviate bending stress in bolt, it shall not connect aggregate thickness more than three time its diameter.

Bolts at the joints shall be so staggered that nuts may be tightened with spanners without fouling.

Fasteners of grade higher than 8.8 are not to be used.

7.15 Maintenance

The long rod insulators offered shall be suitable for employment of hot line maintenance technique so that usual hot line operation can be carried out with ease, speed and safety.

All insulators shall be designed to facilitate cleaning and insulators shall have the minimum practical number of sheds and grooves. All grooves shall be so proportioned that any dust deposit can be removed without difficulty either by wiping with a cloth or by remote washing under live line condition.

7.16 Workmanship

All the material shall be of the latest design and conform to the best modern practices adopted in the extra high voltage field. Suppliers shall offer only such insulators as are guaranteed by him to be satisfactory and suitable for Transmission lines specified and will give continued good service.

The design, manufacturing process and material control at various stages shall be such as to give maximum working load, highest mobility, best resistance to corrosion, good finish and elimination of sharp edges and corners to limit corona and radio interference.

The design of the insulators shall be such that stresses due to expansion and contraction in any part of the insulator shall not lead to deterioration.

The core shall be sound and free of cracks and voids that may adversely affect the insulators.

Weather sheds shall be uniform in quality. They shall be clean, sound, smooth and free from gross defects and excessive flashing at parting lines.

End fittings shall be free from cracks, seams, shrinks, air holes and rough edges. End fittings should be effectively, sealed to prevent moisture ingress, effectiveness of sealing system must be supported by test documents. All surfaces of the metal parts shall be perfectly smooth with the projecting points or irregularities which may cause corona. All load bearing surfaces shall be smooth and uniform so as to distribute the loading stresses uniformly.

All ferrous parts shall be hot dip galvanized to give a minimum average coating of Zinc equivalent to 600 gm/sq. m and shall be in accordance with the requirement of IS:2629 and shall satisfy the tests mentioned in IS:2633. The zinc used for galvanizing shall be of Grade Zn 99.95 as per IS: 209. The zinc coating shall be uniform, adherent, smooth, reasonably bright, continuous and free from imperfections such as flux, ash, rust stains, bulky white deposits and blisters. The galvanized metal parts shall be guaranteed to withstand at least six successive dips each lasting for one (1) minute duration under the standard preece test. The galvanizing shall be carried out only after any machining.

7.17 Equipment Marking

Each Composite Long Rod Insulator shall be legibly and indelibly marked with the trade mark of the manufacturer, name of Employer and month & year of manufacture. The guaranteed combined mechanical and electrical strength shall be indicated in kilo Newton followed by the word 'kN' to facilitate easy identification and to ensure proper use.

One 10 mm thick ring or 20 mm thick spot of suitable quality of paint shall be marked on the cap end fitting of each composite long rod insulator of particular strength for easy identification of the type of insulator. The paint

Kohalpur Nepalguni 132 kV TLP

shall not have any deteriorating effect on the insulator performance. Following codes shall be used as identification mark:

For 90 kN Long rod :Orange
For 160 kN Long rod :Green

7.18 Bid Drawings

The Bidder shall furnish full description and illustration of the material offered.

The Bidder shall furnish along with the bid the outline drawing of each insulator unit including a cross sectional view of the insulator shell. The drawing shall include but not limited to the following information:

- a) Long rod diameter and ball to ball spacing with manufacturing tolerances
- b) Minimum Creepage distance with positive tolerance
- c) Protected creepage distance
- d) Eccentricity of the long rod unit
- e) Axial run out
- f) Radial run out
- g) Unit mechanical and electrical characteristics
- h) Size and weight of ball and socket parts
- i) Weight of composite long rod units
- j) Materials
- k) Identification mark
- I) Manufacturer's catalogue number

After award of the Contract, the Contractor shall submit full dimensioned insulator drawings containing all the details to Employer for approval. After getting approval from Employer and successful completion of all the type tests, the Supplier shall submit 10 more copies of the same drawing to the Employer for further distribution and field use at Employer's end.

After award of the Contract, the Contractor shall also submit fully dimensioned insulator crate drawing for different type of insulators.

7.19 Tests

The acceptance of any quantity of material shall in no way relieve the bidder of any of his responsibilities for meeting all requirements of the specification, and shall not prevent subsequent rejection if such material is later found to be defective.

The sample taken from any numbers of crates for carrying out any type of tests will be to the supplier account.

The equipment should be offered type tested. The Bidder shall submit type test reports as specified in section-2 of this specified along with the bid.

7.19.1 Design Tests on Composite Long Rod Insulator Units

The design tests are intended to verify the suitability of the design, materials and method of manufacture (technology).

Kohalpur Nepalgunj 132 kV TLP

	onnections of metal fittings (Tests to be	IEC: 61109		
performed on the same samp	Tests on interfaces and connections of metal fittings (Tests to be performed on the same samples in the sequence given below)			
i. Test specimens and	i. Test specimens and preliminary tests			
ii. Dry power frequency	voltage test			
iii. Prestressing	iii. Prestressing			
a. Sudden load	release test			
b. Thermal med	chanical test			
c. Water imme	sion test			
iv. Verification tests				
a. Steep front i	npulse voltage test			
b. Dry power fr	equency voltage test			
(b) Assembled core load time te	st	IEC: 61109		
i. Determination of th assembled unit	5			
ii. Control of the slope of	of the strength time curve of the insulator			
(c) Brittle fracture resistance tes	Brittle fracture resistance test			
(d) Test of housing, Tracking and	Test of housing, Tracking and erosion test			
(e) Tests for the core material	Tests for the core material			
i. Dye penetration test				
ii. Water diffusion test				
(f) Flammability test	Flammability test			
(g) Recovery of Hydrophobicity t	Recovery of Hydrophobicity test			
(h) Mechanical Load Time test a insulator housing	Mechanical Load Time test and test of tightness between end firings and insulator housing			
(i) Silicone content test	Silicone content test			
(j) High Pressure washing test	High Pressure washing test			

7.19.2 Type Tests on Composite Long Rod Insulator Units

The electrical type tests shall be performed only once on insulators satisfying the electrically defined criteria for one type and shall be performed with arcing devices, if they are in integral part of the insulator type.

The electrical type tests shall be repeated only when one or more of the above characteristics are changed.

Kohalpur Nepalgunj 132 kV TLP

a) Dry lightning impulse withstand voltage test IEC : 61109 & IEC : 60383

b) Wet Power – frequency test IEC: 60383

c) Mechanical load-time test IEC : 60383

d) Corona and RIV test under dry condition IEC: 60437 & IEC: 60383

e) Vibration Test Annexure-A

f) Silicone content test Annexure-A

i. Flammability test IEC : 61109 & IEC : 60383

ii. Recovery of Hydrophobicity test

7.19.3 Acceptance Tests:

For Composite Long Rod Insulators

(a)	Verification of dimensions	IEC : 61109
(b)	Galvanizing test	IEC : 60383
(c)	Verification of locking system	IEC : 60383
(d)	Verification of tightness of interface between end fittings and insulator housing and of specified mechanical load	IEC : 61109
(e)	Recovery of Hydrophobicity	Annexure-A
(f)	Silicone content test	Annexure-A

In the event of failure of the sample to satisfy the acceptance test(s) specified in above, the retest procedure shall be as per clause 7.6 of IEC 61109.

7.19.4 Routine Tests

For Composite Long Rod Insulator Units

a) Identification of the composite insulators

As per IEC: 61109

b) Visual Inspection As per IEC : 61109

c) Mechanical routine test As per IEC : 61109

7.19.5 Tests during Manufacture

On all components as applicable

a) Chemical analysis of zinc used for galvanizing

As per Annexure-A

Kohalpur Nepalgunj 132 kV TLP

- b) Chemical analysis, mechanical, metallographic test and magnetic As per Annexure-A particle inspection for malleable castings.
- c) Chemical analysis hardness tests and magnetic particle inspection for As per Annexure-A forgings
- d) Tracking and erosion test on insulating material

IEC 60587

7.19.6 Testing Expenses

The entire cost of testing for type, acceptance and routine tests and tests during manufacture specified herein shall be treated as included in the quoted Ex-works/ CIF Price.

In case of failure in any type test, if repeated type tests are required to be conducted, then all the expenses for deputation of Inspector/ Employer's representative shall be deducted from the contract price. Also if on receipt of the Supplier's notice of testing, the Employer's representative does not find 'plant' to be ready for testing the expenses incurred by the Employer for re-deputation shall be deducted from contract price.

7.19.7 Sample Batch for Type Testing

The Supplier shall offer material for sample selection for type testing only after getting Quality Assurance Programme approved by the Employer. The Supplier shall offer at least three times the quantity of materials required for conducting all the type tests for sample selection. The sample for type testing will be manufactured strictly in accordance with the Quality Assurance Programme approved by the Employer.

Before sample selection for type testing, the Supplier shall be required to conduct all the acceptance tests successfully in presence of Employer's representative.

7.19.8 Schedule of Testing

The Bidder has to indicate the schedule of following activities in their bids:

- a) Submission of drawing for approval.
- b) Submission of Quality Assurance Programme for approval.
- c) Offering of material for sample selection for type tests.
- d) Type testing.

7.19.9 Additional Test

The Employer reserves the right of having at his own expenses any other test(s) of reasonable nature carried out at Supplier's premises, at site, or in any other place in addition to the aforesaid type, acceptance and routine tests to satisfy himself that the material comply with the Specifications.

The Employer also reserves the right to conduct all the tests mentioned in this specification at his own expense on the samples drawn from the site at Supplier's premises or at any other test Centre. In case of evidence of non-compliance, it shall be binding on the part of the Supplier to prove the compliance of the items to the technical specifications by repeat tests or correction of deficiencies or replacement of defective items, all without any extra cost to the Employer.

7.19.10 Co-ordinate for testing

The Contractor/ Supplier shall have to co-ordinate testing of insulators with hardware fittings to be supplied by other Supplier and shall have to guarantee overall satisfactory performance of the insulators with the hardware fittings.

Kohalpur Nepalguni 132 kV TLP

7.19.11 Guarantee

The Contractor/ Supplier of insulators shall guarantee overall satisfactory performance of the insulators with the hardware fittings.

7.19.12 Test Reports

Copies of type test reports shall be furnished along with one original. One copy shall be returned duly certified by the Employer only after which the commercial production of the concerned material shall start.

Copies of acceptance test reports shall be furnished. One copy shall be returned duly certified by the Employer, only after which the material shall be dispatched.

Record of routine test reports shall be maintained by the Supplier at his works for periodic inspection by the Employer's representative, if so desired by the Employer.

Test certificates of test during manufacture shall be maintained by the Supplier. These shall be produced for verification as and when desired by the Employer.

7.19.13 Inspection

The Employer's representative shall at all times be entitled to have access to the works and all places of manufacture, where insulator, and its component parts shall be manufactured and the representatives shall have full facilities for unrestricted inspection of the Supplier's and sub-Supplier's works, raw materials, manufacture of the material and for conducting necessary test as detailed herein.

The material for final inspection shall be offered by the Supplier only under packed condition.

The Employer shall select samples at random from the packed lot for carrying out acceptance tests. The lot should be homogeneous and should contain insulators manufactured in 3-4 consecutive weeks.

The Supplier shall keep the Employer informed in advance of the time of starting and the progress of manufacture of material in their various stages so that arrangements could be made for inspection.

No material shall be dispatched from its point of manufacture before it has been satisfactorily inspected and tested unless the inspection is waived off by the Employer in writing. In the latter case also the material shall be dispatched only after satisfactory testing for all tests specified herein have been completed.

The acceptance of any quantity of material shall be no way relieve the Supplier of his responsibility for meeting all the requirements of the specification and shall not prevent subsequent rejection, if such material are later found to be defective.

7.20 Packing and Marking

All insulators shall be packed in suitable PVC/ plastic tubes/ any other suitable packing along with temporary wrap-on shields/ shrouds for each insulator unit. The packing shall provide protection against rodent. The shields/ shrouds shall be for protection during transport and for preventing bird pecking during erection. Further, the shields/ shrouds shall be made of opaque, weather proof material of adequate strength and shall be color coded. The shields/ shrouds shall have smaller diameter than the insulator to stay in place against winds & weather and shall be designed so as to leave only the end fittings exposed for attachment of insulator to tower and line hardware until line construction is complete. The shield/ shroud shall have suitable pull off loop for easy detachment just prior to charging of the line without causing any damage to the insulator. The bidder Supplier shall furnish detailed design of the packing and shield/ shroud along with attachment and detachment procedure in this regard. For marine transportation, crates shall be pelleted.

The packing shall be of sufficient strength to withstand rough handling during transit, storage at site and subsequent handling in the field.

Kohalpur Nepalguni 132 kV TLP

Suitable cushioning, protective padding, or tonnage or spacers shall be provided to prevent damage or deformation during transit and handling.

The Supplier shall guarantee the adequacy of the packing and shall be responsible for any loss or damage during transportation, handling, storage and installation due to improper packing.

All packing cases shall be marked legibly and correctly so as to ensure safe arrival at their destination and to avoid the possibility of goods being lost or wrongly dispatched on account of faulty packing and faulty or illegible markings. Each case/ crate shall have all the markings stenciled on it in indelible ink.

7.21 Standards

The insulator strings and its components shall conform to the following Indian/ International Standards which shall mean latest revision, with amendments/ changes adopted and published, unless specifically stated otherwise in the Specification.

In the event of supply of insulators conforming to standards other than specified, the Bidder shall confirm in his bid that these standards are equivalent to those specified. In case of award, salient features of comparison between the standards proposed by the Bidder and those specified in this document will be provided by the Supplier to establish equivalence.

SI. No.	Indian Standard	Title	International Standard
1.	IS: 209-1992	Specification for zinc	BS: 3436
2.	IS: 406-1991	Method of Chemical Analysis of Slab Zinc	BS: 3436
3.	IS: 731-1991	Porcelain insulators for overhead Power lines with a nominal voltage greater than 1000 V	BS: 137- (I&II) IEC: 60383
4.	IS:2071 Part (I) – 1993 (Part(II)- 1991 Part(III)- 1991	Methods of High Voltage Testing	IEC:60060-1
5.	IS: 2486 Part- I-1993 Part- II-1989 Part-III-1991	Specification for Insulator fittings for Overhead Power Lines with a nominal voltage greater than 1000V General Requirements and Tests Dimensional Requirements Locking Devices	BS: 3288 IEC: 60120 IEC: 60372
6.	IS:2629-1990	Recommended Practice for Hot, Dip Galvanization for iron and steel	ISO-1461 (E)
7.	IS:2633-1992	Testing of Uniformity of Coating of zinc coated articles	
8.	IS:3188-1988	Dimensions for Disc Insulators	IEC: 60305
9.	IS:6745-1990	Determination of Weight of Zinc Coating on Zinc coated iron and steel articles	BS: 433-1969 ISO:1460-1973

Kohalpur Nepalgunj 132 kV TLP

SI. No.	Indian Standard	Title	International Standard
10.	IS:8263-1990	Methods of RI Test of HV insulators	IEC: 60437 NEMA Publication No.07/ 1964/ CISPR
11.	IS:8269-1990	Methods for Switching Impulse test on HV insulators	IEC: 60506
12.		Thermal Mechanical Performance test and mechanical performance test on string insulator units	IEC: 60575
13.		Salt Fog Pollution Voltage Withstand Test	IEC: 60507
14.		Residual Strength of String Insulator Units of Glass or Ceramic Material for Overhead Lines after Mechanical Damage of the Dielectric	IEC: 60797
15.		Guide for the selection of insulators in respect of polluted conditions	IEC:60815

Kohalpur Nepalgunj 132 kV TLP

ANNEXURE 7-A TESTS ON COMPLETE STRINGS WITH HARDWARE FITTINGS

1.1 Corona Extinction Voltage Test (Dry)

The sample assembly when subjected to power frequency voltage shall have a corona extinction voltage of not less than 154 kV (rms) line to ground under dry condition. There shall be no evidence of corona on any part of the sample. The atmospheric condition during testing shall be recorded and the test results shall be accordingly corrected with suitable correction factor as stipulated in IEC: 383.

1.2 Test (Dry)

Under the conditions as specified under (1.2) above, the insulator string along with complete hardware fittings shall have a radio interference voltage level below 1000 micro volts at one MHz when subjected to 50 Hz AC voltage of 154 kV line to ground under dry condition. The test procedure shall be in accordance with IS: 8263/IEC: 437.

1.3 Mechanical Strength Test

The complete insulator string along with its hardware fitting excluding arcing horn, corona control ring, grading ring and suspension assembly/ dead end assembly shall be subjected to a load equal to 50% of the specified minimum ultimate tensile strength (UTS) which shall be increased at a steady rate to 67% of the minimum UTS specified. The load shall be held for five minutes and then removed. After removal of the load, the string components shall not show any visual deformation and it shall be possible to disassemble them by hand. Hand tools may be used to, remove cotter pins and loosen the nuts initially. The string shall then be reassembled and loaded to 50% of UTS and the load shall be further increased at a steady rate till the specified minimum UTS and held for one minute. No fracture should occur during this period. The applied load shall then be increased until the failing load is reached and the value recorded.

1.4 Vibration Test

The suspension string shall be tested in suspension mode, and tension string in tension mode itself in laboratory span of minimum 30 meters. In the case of suspension string a load equal to 600 kg shall be applied along the axis of the suspension string by means of turn buckle. The insulator string along with hardware fittings and two sub-conductors (each tensioned at 43 kN shall be secured with clamps. The system shall be suitable to maintain constant tension on each sub-conductor throughout the duration of the test. Vibration dampers shall not be used on the test span. Both the sub-conductors shall be vertically vibrated simultaneously at one of the resonance frequencies of the insulators string (more than 10 Hz) by means of vibration inducing equipment. The peak to peak displacement in mm of vibration at the antinode point, nearest to the string, shall be measured and the same shall not be less than 1000/ f1.8 where f is the frequency of vibration in cycles/ sec. The insulator string shall be vibrated for not less than 10 million cycles without any failure. After the test the insulators shall be examined for looseness of pins and cap or any crack in the cement. The hardware shall be examined for looseness, fatigue failure and mechanical strength test. There shall be no deterioration of properties of hardware components and insulators after the vibration test. The insulators shall be subjected to Mechanical performance test followed by mechanical strength test as per relevant standards.

2.0 Composite Long rod Insulator Units

2.1 Brittle Fracture Resistance Test

Assembled core load time test with container that contains 1n-HNO3 concentric acid that is applied at the naked rod. The rod should be held at 80% of SML for the duration of the test.

The rod should not fail within the 96 hour test duration

2.2 Recovery of Hydrophobicity Test

1) The surface of selected samples shall be cleaned with isopropyl alcohol. Allow the surface to dry and spray with water. Record the HC classification. Dry the sample surface.

Kohalpur Nepalguni 132 kV TLP

- 2) Treat the surface with corona discharges to destroy the hydrophobicity. This can be done utilizing a high frequency corona tester, Holding the electrode approximately 3mm from the sample surface, slowly move the electrode over an area approximately 1" x 1". Continue treating this area for 2 3 minutes, operating the tester at maximum output.
- 3) Immediately after the corona treatment, spray the surface with water and record the HC classification. The surface should be hydrophilic, with an HC value of 6 or 7. If not, dry the surface and repeat the corona treatment for a longer time until an HC of 6 or 7 is obtained. Dry the sample surface.
- 4) Allow the sample to recover and repeat the hydrophobicity measurement at several time intervals. Silicone rubber should recover to HC 1 HC 2 within 24 to 48 hours, depending on the material and the intensity of the corona treatment.

2.3 Silicone content test

Minimum content of silicon as guaranteed by supplier shall be verified through FT-IR spectroscopy & TGA analysis or any other suitable method mutually agreed between Employer & Supplier in Quality Assurance Programme.

2.4 High Pressure washing test

The test is to be carried out at 3800 kPa with nozzles of 6 mm diameter at a distance of 3m from nozzles to the insulator, followed by a dry power frequency voltage test as per IEC 61109.

3.0 Tests on All components (As applicable)

3.1 Chemical Analysis of Zinc used for Galvanizing

Samples taken from the zinc ingot shall be chemically analyzed as per IS: 209-1979. The purity of zinc shall not be less than 99.95%.

3.2 Tests for Forgings

The chemical analysis hardness tests and magnetic particle inspection for forgings, will be as per the internationally recognized procedures for these tests. The sampling will be based on heat number and heat treatment batch. The details regarding test will be as discussed and mutually agreed to by the Supplier and Employer in Quality Assurance Programme.

3.3 Tests on Castings

The chemical analysis, mechanical and metallographic tests and magnetic, particle inspection for castings will be as per the internationally recognized procedures for these tests. The samplings will be based on heat number and heat treatment batch. The details regarding test will be as discussed and mutually agreed to by the Supplier and Employer in Quality Assurance Programme.

3.4 Autoclave Test

For cement used in the assembly of the insulators six samples from different batches shall be tested in accordance with ASTM C-151. The cement shall have an expansion less than 0.12%.

Kohalpur Nepalgunj 132 kV TLP

ANNEXURE 7-B BASIC INSULATION LEVELS OF INSULATORS

SYSTEM PARTICULARS

Trai	Transmission Line						
Α	System Voltage	132 kV					
В	Maximum Voltage	145 kV					
С	Rated Lightning Impulse withstand (dry)	950 kVp (max)					
D	Rated Power frequency withstand voltage (wet)	360kV rms					

Kohalpur Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 8 OPTICAL GROUND WIRE (OPGW) AND OPTICAL TERMINAL EQUIPMENT

Kohalpur Nepalgunj 132 kV TLP

TABLE OF CONTENTS

8	OPTICAL GROUND WIRE (OPGW) AND OPTICAL TERMINAL EQUIPMENT	2
8.1	General	
8.2	Technical Requirements	
8.3	Optical Fiber Identification	3
8.4	Buffer Tube	4
8.5	Optical Fiber Termination and Splicing	4
8.6	Outdoor Splice Boxes	4
8.7	Test	4
8.8	Maintenance	5
8.9	Joints	5
8.10	Particular Requirement for OPGW Earth Wire fittings and accessories	5
8.11	Payment for OPGW and accessories	ε
8.12	OPGW Tests	
8 13	Indoor Splice box/ Optical Distribution Frame Construction and Design	F

Kohalpur Nepalguni 132 kV TLP

8 OPTICAL GROUND WIRE & OPTICAL TERMINAL EQUIPMENT

8.1 General

The scope of work comprise of supply, installation, testing and commissioning of Optical Fiber Ground Wire (OPGW), including necessary accessories for fiber termination and splicing, for 10 km long Kohalpur - Nepalguni 132 kV Transmission Line.

Bidders shall offer the OPGW and their accessories from reputed manufacturer. The contractor shall ensure complete supervision by competent technical personnel(s) of the OPGW manufacturer during installation, testing and commissioning of the whole OPGW system in totality under the project. The supervision shall also include the on-site training to the Employer's Representative(s).

8.2 Technical Requirements

The optical fiber ground wire (OPGW) shall have supporting cross section of 68 mm². The ground wire of the 132 kV line shall be a steel wire (or Aluminium clad steel wire) with an OPGW Composite Fiber Optic communication cable in the center. The Optical Fiber Cable, containing 48 single-mode optical fibers shall be embedded loosely inside the protective tube. The protective tube shall be of aluminum alloy or stainless steel. Both fiber optic and stranding part of OPGW shall comply with this Specification, and with the following standards:

Single mode fibers ITU-T (former CCITT) G. 652

Optical fiber cables IEC 60793-1 & 2

IEC 1089/91, IEC 60889/87

Stranding part IEC 60104/87; BS 3242

The earth wire shall be suitable for the climatic conditions with no attenuation changes or negative effects on the cable, and compatible with the stringing condition of the phase conductor. Under no condition shall the OPGW sag exceed the conductor sag.

The optical fiber shall be made of germanium doped silica glass or pure silica glass. It shall have a primary coating made of silicone or similar material with physical and mechanical properties at least those of silicone (acrylic or similar).

The tube shall be made of suitable material sufficiently strong to hold its shape and provide protection for the optical fibers against deformation and friction. The strength member of the fiber optic cable shall provide protection against buckling, kinking and strain. The material to be used shall be fiber reinforced plastic.

The direction of lay of the outer layer of strands shall be right hand. Lay ratio of any layer shall be not greater than the lay ratio of the layer immediately beneath it. The make up of ground wire shall be such that the strand shall remain and shall not twist when the conductor is cut. The earth wire shall be manufactured so that no twisting occurs when subjected to axial loads, i.e. when unrolling and stringing.

All wires used in the manufacture of the earth wire shall be free from protrusion, sharp edges, abrasion and any other imperfections.

No jointing of the aluminum clad steel wires shall be permitted.

There shall be no joints or splices in any optical fiber in any reel length of the complete optical cable.

The creep characteristic of the finished earth wire shall be of virtually unvarying uniformity.

Optical fibers

Kohalpur Nepalguni 132 kV TLP

All fiber installed as a part of this Contract shall have a minimum life of 30 years from the date of final acceptance.

The OPGW shall include minimum 24 fibers. The main optical characteristics of the OPGW are mentioned in the schedule A.11 of Section - 11.

The other characteristics of the OPGW shall be as follows:

Outer diameter : 11.4 mm

Cable weight : approximately 487 Kg/ km

Calculated breaking load : 86.6 kN

Modulus of elasticity : 162 kN/mm²

Coefficient of thermal expansion : 3.0x10⁻⁶ per degree K

Nominal short time current capacity at

Initial/final temperature 20/200 °C : 5.5 kA (min)

DC resistance at 20 °C : Not more than 1.247 ohm/ km

Attenuation

The attenuation coefficient for wavelengths between 1285 nm and 1330 nm shall not exceed the attenuation coefficient at 1310 nm by more than + 0.05 dB/km.

The attenuation coefficient for wavelengths between 1535 and 1565 shall not exceed the attenuation coefficient at 1550 mm by more than + 0.05 dB/km. The attenuation of the fiber shall be distributed uniformly throughout its length such that there are no point discontinuities in excess of 0.1 dB.

The cable shall consist of single mode dual-window color coded optical fibers. There shall be no factory splices within the cable structure.

8.3 Optical Fiber Identification

Color-coding is essential for identifying individual optical fibers and groups of optical fibers. Individual optical fibers within a fiber unit and fiber units will be identifiable using a color-coding scheme. The color-coding system shall be discernible throughout the design life of the cable.

Each cable shall be traceable of each fiber back to the original fiber manufacture's fiber number and parameters of the fiber.

If more than the specified numbers of fibers are included in any cable, the cable manufacturer shall test the spare fibers and any defective fibers shall be suitably bundled, tagged and identified at the factory by the fiber manufacturer.

Fiber units	Fiber No. & Color							
Blue tube	1	2	3	4	5	6		
Dide tube	Blue	Orange	Green	Brown	Gray	White		
0	7	8	9	10	11	12		
Orange tube	Blue	Orange	Green	Brown	Gray	White		

Kohalpur Nepalguni 132 kV TLP

Green tube	13	14	15	16	17	18
Green tube	Blue	Orange	Green	Brown	Gray	White
Durana taka	19	20	21	22	23	24
Brown tube	Blue	Orange	Green	Brown	Gray	White

8.4 Buffer Tube

Loose tube buffer construction shall be applied. A buffer for protection from physical damage shall surround the individually coated optical fiber(s) during fabrication, installation and performance of the cable. The fiber coating and buffer shall be strippable for splicing and termination. The inside diameter of the buffer tube shall be of appropriate size to allow free movement of the fibers during cable Contraction or elongation resulting from thermal, tensile or vibration loads.

Buffer tubes shall be sleeved over multiple fibers forming a fiber unit. A fiber unit may consist of up to 6 fibers, individually identifiable utilizing the color code in conformance with EIA 359 A.

8.5 Optical Fiber Termination and Splicing

Suitable splice boxes (enclosures) shall be provided to encase the optical cable ends and fusion splices in protective, moisture and dust free environment. The splice boxes shall be designed for the storage and protections of a minimum of 12 fibers cables and provide access through locked doors.

Fiber-optic cable of adequate length shall be provided so that all splicing can be performed at ground level at the towers. All splicing and necessary material shall be included in the price schedule presented by the Contractor.

8.6 Outdoor Splice Boxes

Splice boxes provided by the Contractor for outdoor use shall be suitable for use with the cable type provided as part of this Contract. The splice boxes shall be appropriate for mounting on steel structures and accommodate pass-through splicing and fiber terminations.

The splice box, including organizer/ splice trays, shall be designed to seal and protect the fiber cable splices from the environment defined in this specification and it shall provide easy access for any maintenance function.

All splice boxes shall be of metal construction that are clean and smooth finished, treated to resist rust, accommodate the storage of a minimum of 3 meters of coiled fiber and allow easy access to the splice trays. In addition there shall be a steel frame to coil up about 10 meters of OPGW outside the protection box.

8.7 Test

The testing must be done by recognized equipment and it shall be possible to produce a computerized print out from the computer and the software, all of which (lap top computer, printer and software) must be included in the testing, commissioning or installation unit prices.

There are different test series to assure the quality of OPGW:

- Routine test (in–process testing according to internal quality plan)
- Factory acceptance test (FAT, witnessed by customer)
- Type test (only in case of a basic new design, repetition in exceptional cases)

Kohalpur Nepalgunj 132 kV TLP

OPGW tests shall be in accordance with applicable standards or agreements between Employer and Contractor / manufacturer.

As a general rule the tests will be performed according IEC 60794-4-10. However, if necessary tests can be done according to IEEE Std1138.

8.8 Maintenance

To maintain the cable the Contractor shall propose and provide suitable equipment and necessary training for the Employer personnel to execute the work.

8.9 Joints

Number of Joints shall be kept to a minimum. Approved equipment and methods must be used to test the cable from both ends.

8.10 Particular Requirement for OPGW Earth Wire fittings and accessories

The associated fittings and other accessories have to satisfy the specific function of OPGW and fiber optics requirements for a total integrity of their components. The best way to achieve these goals shall be in application of suitable performed products. A brief description of the accessories is as follows:

a. Suspension Assembly: Suspension assembly shall consist of:

- armor grip suspension clamp (aluminum alloy hyper formed armor rods and suspension clamp);
- > associated hardware for earth wire suspension:
- Flexible grounding loop connection.

b. Tension Assembly: The tension assembly shall consists of:

- Hyper formed alum weld dead end grip;
- associated hardware for earth wire attachment (shackle, link, clevis, clamps);
- > Flexible grounding loop connection.

c. Vibration Dampers

Dampers where necessary, shall be of Stockbridge type installed complete with the armor rods of the size suitable to the earth wire size.

d. Fiber Optic Splice Closure-Joint Box

The fibre optic splice closure allows clamping of the cables to be spliced. It shall have following characteristics:

- ➤ The splice capacity for minimum 12 single-mode fibers from metal free optical cable with loose tube construction;
- waterproof housing of the closure aluminum or stainless steel construction with protection class IP 65 of IEC 60529;
- box and cable glands tightened by sealing compound.

Installation height shall be 1.5 m above the anti-climbing devices of the towers.

e. Fiber Optic Hood Closure-Terminal Box

Kohalpur Nepalguni 132 kV TLP

The fibre optic splice closure allows termination of OPGW on the substation gantry and interface with the underground fiber optic cable leading into the control building. It shall have the following characteristics:

- the cable glands for accepting of one metal free optical cables with minimum 12 single-mode fibers and loose tube construction:
- waterproof housing of the closure aluminum or stainless steel construction with protection class IP 65 of IEC 60529;
- box and cable glands tightened by sealing compound.

It shall be installed on the terminal gantry 1.5 m above ground level.

8.11 Payment for OPGW and accessories

Payment for the supply and installation for the contract item "Optical fiber ground Wire (OPGW) and accessories" will be made at the unit bid price. Therefore, in the Price Schedule, the unit bid price shall include full compensation for all the costs incurred in furnishing all materials, equipment, labors and all other operations related to OPGW conductor and accessories fabrication, delivery etc.

8.12 OPGW Tests

The following tests shall be conducted once on sample/ samples of OPGW for every 50 km of production from the manufacturing facility:

- Structure and dimension test
- > Transmission characteristics test
- Characteristics test of ACS
- UTS test

8.13 Indoor Splice box/ Optical Distribution Frame Construction and Design

The indoor splicing box/ optical distribution frame shall be of the wall mounted type and accommodates pass-through the splicing and interconnection for the equipment.

Kohalpur-Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 9 ERECTION, STRINGING AND MISCELLANEOUS WORKS

Karijan (M)

Kohalpur-Nepalgunj 132 kV TLP

TABLE OF CONTENTS

9	ERECTION, STRINGING AND MISCELLANEOUS WORKS	. 2
9.1	ERECTION OF STEEL TOWERS	
	CONDUCTORS STRINGING	3

Kohalpur-Nepalguni 132 kV TLP

9 ERECTION, STRINGING AND MISCELLANEOUS WORKS

9.1 ERECTION OF STEEL TOWERS

All towers shall be vertical under the stresses set up by the completed overhead line.

Precautions shall be taken to ensure that no parts of the structures are strained or damaged in any way during erection and drifting shall not be allowed.

Support members, which arrive on Site with slight distortions due to handling in transit, shall be straightened by the Contractor using an approved means and offered to the Employer or Employer's representative for inspection and subsequent acceptance or rejection before erection commences.

Suitable ladders shall be used whenever necessary during erection but such ladders and removable step bolts shall be removed when erection is not in progress.

Spanners used during erection shall be well shaped and fit closely on the hexagon to avoid damaging nuts and bolt head.

Reaming or drilling for correction of mismatched holes will only not be allowed without the written approval of the Employer's representative.

The Contractor shall ensure that a rigid bolt-checking program is carried out on all supports. On completion of initial assembly of towers, an organized bolt checking team shall check all bolts for tightness from the structure top downwards.

Bolt checking shall be carried out within one week from the time the support is erected. The bolt tightening shall be as follows:

Size of Bolt Tightening Torque (kg.cm.)

16 1000-1200 20 1400-1800

Throughout the course of support erection the Contractor shall ensure that unbraced members are adequately supported by stays or guys or temporary struts prior to being braced.

The bracing of all four sides of the support shall be completed before guys are removed and before any erection of a higher section of the tower is commenced.

In no case the tower structure shall be erected until seven days after completing the foundation concrete work, and until proper backfilling and compaction.

The Contractor shall notify the Employer two weeks before the supports are ready for inspection. The inspection and correction of defects if any shall be complete before the start of the stringing operation.

Damaged galvanizing shall be repaired on site by galvanizing paint and as specified in accordance with Article 1.7 of General Technical Specification.

All bolts and nuts below the anti-climbing device shall be properly punched such as to provide safety against opening of the nut-bolts even with the wrench set. The punched area shall immediately be coated with zinc paint.

Kohalpur-Nepalguni 132 kV TLP

9.1.1 Payment

Payment for the contract item Steel tower erection will be made at the unit price bid "Erection of tower and leg extensions". Therefore in the schedule the unit bid price shall include full compensation for all cost incurred in furnishing all materials, tools, labours etc. for erection work related to this item.

9.2 CONDUCTORS STRINGING

At least 3 months before conductor stringing commences, the Contractor shall submit to the Employer a detailed account of his proposed stringing procedure which should include details of temporary support stays and compensation for initial stretch and long term creep of the conductors.

Full use shall be made of maximum conductor lengths in order to reduce the number of mid span joints to a minimum.

There shall not be more than one joint per conductor in any one span, and tension joints shall not be less than 15 meters from any conductor clamp. No tension joints shall be used:

- In section of less than 3 spans between tensions supports.
- In spans over navigable rivers, buildings, power lines, telecommunication lines, public roads and in any span subject to special way leave conditions or in any adjacent span.

Conductor repair sleeves shall not be used without the permission of the Employer or Employer's representative.

The conductors, joints and clamps shall be erected using the approved tools and in such a manner that no bird-caging, over tensioning of individual wires or layers or other deformation or damage to the conductors occurs. Clamps or other devices used in erection shall be of approved design and shall allow no relative movement of strands or layers of the conductors.

The Contractor shall keep a record of all conductor joints giving the location, the date of assembly and the name of the lineman responsible for the jointing. Where records of joints made by a particular lineman show a repeated performance below that required, the Contractor shall cease to employ the lineman on jointing operations and shall immediately replace him with other qualified personnel.

Phase conductors and OPGW shall be erected with such sags that everyday temperature in still air and 20 degree C temperature with maximum wind pressure, the final tensions shall provide factors of safety on the ultimate tensile strength of the conductor. The Contractor shall submit erection and final sag and tension charts for each type of conductor. These charts shall plot inter-related curves of tensions against equivalent span lengths, and actual span lengths against sags, at temperatures of 0° C, 20°C, 32°C, 40°C, 60°C and 80°C in still air conditions, and shall show details of conductor size, conductor breaking load, and conditions of loading.

In calculating the sags and tensions, allowance shall be made for the elasticity and coefficients of expansion of the conductor materials.

The term "final tension" shall mean the tension existing in a line conductor, for any given condition of loading after sufficient period in service to allow for "bedding down" stretch and creep to take place. For purposes of calculating creep allowance this shall be taken as ten years from erection.

The "equivalent span" method shall be used, in which the tension in any section length is that which would apply to a single span equal to the square root of the length arrived at by dividing the sum of the cubes of the individual span lengths, in the section considered, by their sum. The calculated tensions at the time of initial erection shall be increased by an approved amount to allow for settling of the conductors, other means may be adopted subject to the approval of the Employer or Employer's representative.

Procurement of Plant

Kohalpur-Nepalguni 132 kV TLP

At the end of the guarantee period the specified ground clearance plus the conductor creep age allowance shall not be infringed, in addition, the sag of any phase conductors in the same span.

Where required by the Employer, prior to the issue of the Operational Acceptance Certificate, the Contractor shall be responsible for checking that the relative sags of the conductors are within the specified tolerance. Such checks shall be carried out at selected point along the route as required by the Employer. Clearances between conductors and ground and between jumpers and structures shall be checked by the Contractor during erection and before handing over the line.

The Contractor shall provide dynamometers, sighting boards and levels suitably mounted for clamping to support steelworks and other approved apparatus necessary for the proper checking of the work. When required by the Employer, dynamometers shall be tested and if necessary recalibrate at the Contractor's expense.

During the progress of the work, the Contractor shall record on approved schedules the particulars of the sagging of conductors on each section of the route. These schedules shall show the support numbers of the section, individual span lengths, the equivalent span, the design and erection sags, together with the mean actual sag of the phase conductor as well as the temperature, and the dates of the stringing and checking. At the end of the Contract six sets of these schedules shall be handed to the Employer.

Blocks for running out conductors shall be of approved type and shall be robust and full running.

The wheel of the running out block shall have a diameter of not less than 20 times the outside diameter of the conductor and shall be fabricated from aluminum.

The Contractor shall provide as a minimum sufficient running blocks commensurate with stringing the longest section of the project.

Jumper-loops shall be cut to length such that the loop arcs at the points of departure from tension-clamp are naturally tangential to the tension-clamp departure angle.

All conductor, connections and clamps shall be treated with approved jointing grease to prevent galvanic corrosion between dissimilar metals and to inhibit aluminum surface oxidization.

After the line conductors have been finally tensioned to their correct sags, the Contractor shall erect vibration dampers at the recommended distance from the conductor clamps.

The Contractor shall identify the spans where aeronautical signs on the earth wire may need. However instruction from the Employer to put such signs at any span shall be fulfilled.

Payment

Payment for the contract item conductor stringing will be made at the unit price bid "Stringing of Conductor". Therefore in the schedule the unit bid price shall include full compensation for all cost incurred in furnishing all materials, equipment and labor for installation of insulators strings, jumpers, hardware, stringing and any other related works to this item. No additional payment will be made for any restringing and rearrangement of the existing circuit necessitated by the interconnection of the existing line with the Tee-off tower for the new line. Measurement for the payment shall be based on the both double circuit conductor km calculated by addition of the horizontal distance between towers.

Shutdown

For the stringing work of the lines, the Contractor shall request the Employer for the shutdown of existing transmission and/ or distribution lines, where necessary, at least 15 days in advance. The request letter or form shall include the place of work and duration of shutdown needed. The period of shutdown shall be as

Kohalpur-Nepalgunj 132 kV TLP

minimum as possible. The Employer has right to decrease the justified period of shutdown, if requested period of shutdown by Contractor is excessive and to shift the date of shutdown.

The Contractor shall complete the work, during the shutdown within the stipulated time period. If the Contractor fails to complete the work within the stipulated time limit, the Employer will claim the amount of money arising from the loss of energy not transmitted or distributed.

Kohalpur Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER- 10 INSPECTION, TESTING AND COMMISSIONING

Kohalpur Nepalgunj 132 kV TLP

TABLE OF CONTENTS

10	INSPECTION, TESTING AND COMMISSIONING	2
10.1	Scope	2
10.2	Quality, Assurance, Inspection and Testing	2
10.3	Guarantees	3
10.4	Test at Manufacturers Works	3
10.5	Type Test	4
10.6	Insulator Fittings	6
10.7	Conductors	6
10.8	Routine Test	6
10.9	Cost of tests at manufacturer's works	6
10.10	Site Tests	7
10.11	Commissioning Test	8
10.12	Field test quality plan	g
APPEN	NDIX - 10.1: FIELD QUALITY PLAN FOR TRANSMISSION LINES	10
ADDEN	IDIY - 10.2: DDE _ COMMISSIONING DDOCEDLIDES FOR TRANSMISSION LINES	20

Kohalpur Nepalgunj 132 kV TLP

10 INSPECTION, TESTING AND COMMISSIONING

10.1 Scope

The whole of the Works supplied under the Contract shall be subject to inspection and test by the Employer or their Representative during manufacture, erection and after completion. The inspection and tests shall include, but not be limited to, the requirements of this Chapter of the Specification.

All appliances, apparatus, supervision, labour and services necessary to carry out all tests shall be provided by the Contractor unless specifically stated otherwise.

All expenses related to the factory tests of steel structures, conductor and insulator string shall be borne by the Contractor.

10.2 Quality, Assurance, Inspection and Testing

To assure that the supply and services under the scope of this Contract whether manufactured or performed within the Contractor's works or at his subcontractor's premises or at the Site or at any other place of work are in accordance with the Specifications, the Contractor shall adopt suitable quality assurance program to control such activities at all points necessary. Such program shall be outlined by the Contractor and shall be finally accepted by the Employer after discussions before the award of the Contract. A quality assurance program of the Contractor shall generally cover, but not be limited to the following:

- a. His organization structure for the management and implementation of the proposed quality assurance program.
- b. Documentation control system.
- c. Qualification data for bidder's key personnel.
- d. The procedure for purchases of materials, parts, components, and selection of sub-contractors' services including vendor analysis, source inspection, incoming raw materials inspection, verification of materials purchases.
- e. System for shop manufacturing including process controls and fabrication and assembly controls.
- f. Control of non-conforming items and system for corrective actions,
- g. Control of calibration and testing of measuring and testing equipment.
- h. Inspection and test procedure for manufacture.
- i. System for indication and appraisal of inspection status.
- j. System for quality audits.
- k. System for authorizing release of manufactured products to the Employer.
- I. System for maintenance of records.
- m. System for handling storage and delivery.
- n. A quality plan detailing out the specific quality control procedure adopting for controlling the quality characteristics relevant to each item of supply.

The quality plan shall be mutually discussed and approved by the Employer after incorporating necessary corrections by the Contractor as may be required.

10.2.1 Quality Assurance Documents

The Contractor shall be required to submit all the Quality Assurance documents as stipulated in the Quality Plan at the time of Employer's inspection of material/ equipment.

Kohalpur Nepalguni 132 kV TLP

The Employer, through his duly authorized representatives, reserves the right to carry out Quality Audit and Quality Surveillance of the systems and the procedures of the Contractor's and the subcontractor's Quality Management and Control Activities.

10.2.2 Inspection, Testing and Inspection Certificates

The provisions of the clauses on Test and Inspection of the GCC and SCC shall be applicable to the supply and erection portions of the Works. The Employer shall have the right to re-inspect at his expenses any material though previously inspected and approved by him at the Contractor's works, before and after the same are inspected at Site following the latter, material is found defective, then the Contractor shall bear the cost of this inspection and reinstatement according to specification.

10.3 Guarantees

Bidders shall state and guarantee the technical particulars listed in the Schedules of Technical Particulars and Guarantees forming a part of the other sections. These guarantees shall be binding and shall not be departed from without the written permission of the Employer. The tolerances permitted in the BS, ISO or ANSI will apply unless stated otherwise.

10.4 Test at Manufacturers Works

10.4.1 General

Where no specific test is specified then the various items of materials and equipment shall be tested in accordance with the relevant, Indian, British, IEC, or American Standards. Where no appropriate standard is available, tests shall be carried out in accordance with the maker's standard practice which must meet with the approval of the Employer.

At least thirty days (30) notice in writing shall be given to the Employer of the readiness of plant for test or inspection and every facility shall be provided by the Contractor and sub-Contractor(s) to enable the Employer or their Representative to carry out the inspections and witness the tests. This includes progress, test rig and packing inspection.

Inspection of equipment will not be carried out unless copies of the relevant sub-orders, drawings and test procedures have been approved by the Employer.

No equipment shall be packed, prepared for shipment, or dismantled for the purpose of packing for shipment, unless it has been satisfactorily inspected, or inspection has been waived by the Employer.

Functional electrical and mechanical tests shall be carried out on the completed plant after assembly in the Works. The extent and method of recording the results shall be agreed by the Employer in sufficient time to enable the tests to be satisfactorily witnessed or to make any change to the proposed program of tests.

All instruments and apparatus used in the performance of the tests shall be to the approval of the Employer and, if required by the Employer, shall be calibrated to an agreed standard at a laboratory of National standing to be nominated by the Contractor and approved by the Employer.

The cost of carrying out such calibration shall be borne by the Contractor in all cases.

10.4.2 Material Tests

Requirements for the testing of castings and forging are detailed elsewhere in the Specification. Representative samples of all plates, bars and pipes etc. which form components of the equipment/ accessories shall be tested as required by the relevant standard or code at the request of the Employer.

Kohalpur Nepalguni 132 kV TLP

10.4.3 Test Certificates

Sets of all principal test records, test certificates and performance curves shall be supplied to the Employer in number of copies within the time frame mentioned in section-2 of this specification.

These test records, certificates and performance curves shall be supplied for all tests, whether or not they have been witnessed by the Employer or his Representative. The information given on such test certificates and curves shall be sufficient to identify the material or equipment to which the certificate refers and should also bear the contract reference title. Specified requirements shall be shown on each certificate for comparison with actual test results.

When all equipment has been tested, test certificates from all Works and Site tests shall be compiled by the Contractor into volumes and bound in an approved form complete with index. Two copies of each volume shall be supplied to the consultant and four copies to the Employer.

10.5 Type Test

Type tests are required to prove the general design of the equipment. Type test reports of test performed on similar equipment shall be acceptable. But in case some type tests are required by the Employer, these tests prescribed shall be carried out at the Contractor's cost.

10.5.1 Tests on Tower

Test on each type of towers to be supplied, shall be made at the manufacturer's plant. The number of tower test, if required, is given in price schedule.

The Contractor shall give Employer not, less than 30 days advance notice, in writing or by fax, of the date when towers will be ready for tests. Employer reserves the right to waive the requirement for performing any or all tests. Should Employer exercise this right, the applicable unit prices for performing the test will be deducted from the total contract sum. The Contractor will not be entitled to any additional compensation by reason of such waiving.

Each test shall be performed in accordance with the following requirements:

- a. Tower: The tower shall be fabricated from approved detail drawings in a manner as close to final production procedures as is practicable. The tower shall be complete in every detail.
- b. Erection: The tower shall be erected on rigid foundation using the specified tower and bolts and nuts shall be tightened to the specified torque. The vertical axis through the center of gravity of the erected tower shall not be out of gravity of the erected foundation and shall not be out of plumb by more than 1 cm for every 500 cm height.
- c. Rigging: The Contractor shall submit for approval as to compliance with the specifications, diagrams showing the proposed methods of applying loads and measuring deflection.
- d. Loading: All test loads corresponding to conductor and overhead ground wire loading shall be applied directly to the regular attachment. Details shall be provided for these loads. Test wind loads equivalent to wind loads on the tower shall be applied where convenient and in such a manner that the summations of applied load and overturning moment are as close as possible to the actual behaviour as designed. Extra compressible member is not allowed for use of applying wind loads on tower. To ensure application of full-test loads to the tower, friction losses in rigging shall be added to the rigging loads.
- e. Load Programs: The contractor shall program the tests to most favourably demonstrate that the towers will carry all design loads and conditions specified in the loading diagrams. Test wind loads on tower shall be the same as applied in design calculation.
- f. Deflection Measurements: Deflections shall be recorded for the "before-load", "load-on" and "load-off" condition to provide longitudinal and transverse deflections at the tower top canter, at the elevation of the middle cross arm (s) and at least one intermediate point of tower body.

Kohalpur Nepalguni 132 kV TLP

- g. Design Load Tests: The initially applied loads and the increment of loading shall be 25 percent of the loads given in the loading diagrams. Each load increment shall be maintained for not less than two minutes for each assumption except under maximum (full) design loads the period of five minutes shall be maintained and during which time there shall be no slacking off or adjustment of the loads. Should it become necessary to adjust the loading, the two or five minutes period shall start after the loading is stabilized and constant. All test loads shall be removed completely before the loads for testing under different assumptions are applied.
- h. Destruction Tests: After the successful completion of the load tests, the tower shall be further tested to destruction by increasing the transverse loads under any condition specified by Employer in increments not to exceed five per cent of full design transverse loads. The vertical and/or longitudinal load (s) is kept constant at their full design values while deflections are being recorded.
- i. Modification of Tower Components: Any conspicuous yielding or any failure of any part of the tower under any of the tests specified in sub-article shall be considered a defect. If a defect develops, the Contractor shall modify his design of the tower and send to Employer for approval. The modified tower shall then be retested at the Contractor's expense (including the cost of witness, if any) until satisfactory results are obtained.
- j. Material Tests: Steel materials used for tested towers shall be subject to tension or bend test in accordance with ASTM A370. Tests shall be performed by the Contractor at no additional cost to Employer. The test specimens shall be selected as follows:
 - > Two sets selected from the destructed members of each tested tower.
 - Two sets selected from the undisturbed members of each tested tower.
- k. Reports: The Contractor shall furnish four certified copies of full reports of all tower and material tests, the calibration of the dynamometers or gauges, including clear photographs of the test setups and nature of all failures, diagrams showing deflection of towers at each interval of loading, details diagrams deflection records.

10.5.2 Insulators

Impulse voltage withstand and flashover tests

The insulators for Impulse Voltage withstand tests shall be tested applying five standard 1.2/ 50 waves as specified in BS 137 and BS 923. If there is no flashover or puncture the insulator shall be deemed satisfactory. If there is more than one flashover the insulator shall be deemed not to comply with BS 137. In the event of one flashover occurring, a new series of ten impulses shall be applied. The insulator shall be considered to comply with BS 137 if during the second series of tests there is no flashover or puncture.

10.5.3 50% Flashover tests shall be carried out per BS 137

Additional tests will be required to show that the specified impulse level is obtained when the insulator strings are mounted on the structure. Bidders should note that the impulse test rig will therefore require earthen metalwork to simulate the proposed power configuration.

Flashover tests to determine the optimum lift shall be carried out in order to avoid cascade over as many line end insulators as possible.

10.5.4 Dry power frequency withstand

The Dry power frequency withstand test shall be carried out as specified in BS 137. The test voltage shall be maintained for one minute and the insulator shall be considered satisfactory if no flashover or puncture occurs.

Kohalpur Nepalguni 132 kV TLP

10.5.5 Wet power frequency voltage withstand tests

The wet power frequency withstand test shall be carried out as specified in BS 137. The test voltage shall be maintained for one minute and the insulator shall be considered satisfactory if no flashover or puncture occurs.

10.5.6 Radio interference tests

Radio interference tests shall be carried out in accordance with IEC 437.

10.6 Insulator Fittings

Tensile tests, resistance tests and galvanizing tests shall be carried out in accordance with the requirements of BS 3288 Part 1 and BS 729.

10.7 Conductors

The conductors shall be tested in accordance with the requirements of BS: 215 or IS:398.

10.8 Routine Test

All equipment shall be subjected to routine tests at the manufacturer's work and shall include but not be limited to the following:

10.8.1 Operational tests

All equipment shall be tested after complete assembly to ensure the correct operation.

10.8.2 Clamps, joints and insulator fittings

Sample parts selected at random by the Employer shall be subjected to such tests as the Employer may direct in order to demonstrate compliance with Specifications and BS 3288 as applicable.

10.8.3 Insulators, fittings and conductor overall tests

A complete mechanical test of insulator string, fittings and section of conductor for suspension and tension sets at each voltage level will be required. The complete units shall withstand load tests including the safety factors specified. Tests other than mechanical tests on the complete unit may be required at the discretion of the Employer.

10.9 Cost of tests at manufacturer's works

The costs of making any test to be conducted at the manufacturer's works shall be borne by the Contractor. This shall apply to tests performed at the site or elsewhere.

After receiving the prior information about the completion of manufacturing at the factory, the Employer will depute his personnel to the Contractor's factory to witness the fabrication, assembly and testing of any or all parts of major equipment. The number of the Employer's personnel and equipment to be witnessed will be as listed below. The duration of such visits shall be as per inspection/ testing requirements but not less than seven days.

-	Prototype testing of Tower type QB & QC	2 persons, 1 visit
-	Conductor	2 persons, 1 visit
-	OPGW	2 persons, 1 visit
-	Insulators	2 persons, 2 visit
-	Hardware/ fittings	2 persons , 1 visit

Procurement of Plant

Kohalpur Nepalguni 132 kV TLP

The travelling expenses of the inspectors nominated by the Employer will be borne by Employer. However, the Contractor shall bear all the expenses (including travelling expenses as per NEA norms) occurred due to the repetition of the tests required due to:

- > Failure of the test:
- > Test facilities not ready at the time of inspection or mismatch of test schedule/program provided by the Contractor.

10.10 Site Tests

10.10.1 Measurement of footing resistance

Before stringing the conductor, the footing resistance of each support shall be measured with an earth resistance measuring instrument to the approval of the Employer.

10.10.2 Measurement of earth electrode resistance

Where the footing resistance is found to exceed 10 ohms additional earth electrodes are to be installed and the combined earth electrode and footing resistance measured together and recorded using the same test instrument. Additional electrodes are to be installed to obtain a maximum resistance value of 10 ohms.

10.10.3 Measurement of line impedance

Positive and zero sequence impedance measurement tests shall be carried out after final line inspection has been completed. The measurement tests shall be carried out on all new lines covered by this Contract, by the Contractor and at his cost.

10.10.4 Conductor joint tests

In the case of tension clamps, joints and bi-metal terminals the resistance of each part shall be measured by instruments supplied by the Contractor and approved by the Employer. The resistance of such fittings shall not exceed 75% of the electrical resistance of the equivalent length of conductor. The tests shall be carried out in the presence of the Employer. Stringing shall not commence until suitable instruments are on Site, approved by the Employer and ready for use.

10.10.5 Measurement of galvanizing thickness

The Contractor shall have available on Site for the Employer's use an instrument suitable for the accurate checking of galvanizing thickness. The gauge shall be available from the time of arrival of the first consignment of steel work until the issue of the Operational Acceptance Certificate. The cost of the gauge and other operating expenses are deemed to be included in the Contract Price and the gauge will remain the property of the Employer.

10.10.6 Tests on completion

Acceptance tests shall be carried out on Site by the Contractor on each section of the Works. These tests shall immediately follow the commissioning of each section of the Works.

The lines shall be energized at full working voltage before handing over and the arrangement for this, and such other tests as the Employer shall desire to make on the complete line, shall be assisted by the Contractor who shall provide such labour, transport and other assistance as is required without any extra charge. Apparatus for special tests shall be provided by the Contractor.

The Contractor shall submit to the Employer at least two months before the anticipated commencement of acceptance tests his detailed proposal for carrying out acceptance tests.

Kohalpur Nepalgunj 132 kV TLP

10.10.7 Test instrumentation

The method of measuring all quantities and qualities and the measurement tolerances shall be in accordance with the appropriate BS, ISO or ANSI.

The terminal conditions required for establishing whether the guarantees are met shall be measured by precision test equipment to be installed by the Contractor in addition to the permanent measuring equipment where supplied under the contract.

The overall design of the Works shall provide for the installation and use of test equipment so as not to interfere with the plant loading or delay the guarantee completion dates.

All the precision test equipment to be used for carrying out tests shall be calibrated against standard instruments before the tests, and if required by the Employer, also after the tests. Calibration records shall be available for inspection by the Employer or his Representative.

During the design stage of the plant, the contractor shall give details of measurements to be made to substantiate that the performance of the plant meets the requirements of the specification and in particular shall submit for approval a schedule of performance test instrumentation necessary to demonstrate the guarantees.

10.10.8 Test reports

For each of the specified tests the contractor shall agree the test figures with the Employer and shall submit for approval triplicate copies of the test report containing a complete analysis of the test results within one month of the completion of the relevant test. Eight copies of the final approved report shall be submitted to the Employer.

10.11 Commissioning Test

The contractor shall be responsible for checking that total and relative sags of conductors are within the specified tolerances. Such checks shall be carried out at positions along the route selected by the Employer and the contractor shall provide the necessary surveying instruments to enable the checks to be carried out with the line in service without any extra charge.

The commissioning tests are as follows:

10.11.1 Measurement of line parameters

The line insulation resistance shall be measured on each individual section of the lines before the jumper loops are closed and again on the whole lines when they are completed.

The electrical parameters of the lines such as resistance, reactance, suspectance etc. shall be measured in a manner to be approved by the Employer, sufficiently accurately to enable the positive, negative and zero sequence impedance to be determined for the lines.

The lines shall then be energized at the proposed operating voltage from the Employer's system or generating station and the charging current measured and other such tests performed as the Employer may require making on the completed line.

The contractor shall carry out all these tests in the presence of the Employer, and shall provide all the necessary labour, transportation, apparatus, instruments and other assistance as required, without any extra charge.

10.11.2 High voltage tests

The overhead lines shall be tested with DC voltage applied between each phase and earth by means of a DC high voltage testing unit and without cleaning of the insulators. Bidders shall state leakage current

Kohalpur Nepalguni 132 kV TLP

expected for such tests, for the different section of lines and taking into consideration and atmospheric conditions. The contractor shall supply the necessary apparatus, instruments and the D.C. high voltage supply and the testing unit including those required for carrying out test and should be shown in the schedules in Volume I.

The test voltage shall be applied for five minutes for 132 kV overhead lines and shall be as follows:

Line Voltage D.C Test Voltage to Earth

132 kV 187 kV

The electric power necessary for the tests at Site shall be supplied by the Employer on condition of availability. The contractor shall satisfy himself that all connections are good before switching power and shall be responsible for, and make good any damage that may arise because of faulty connections.

All D.C. measuring apparatus, instruments including D.C. high voltage testing unit will be subject to checking and calibration by the Employer before starting the high voltage D.C. current test, catalogues and details to be submitted with offer. Full details and catalogue of the proposed high voltage D.C. testing equipment shall be submitted for approval before shipping the test equipment.

10.12 Field test quality plan

A field test quality plan is given in the appendix-10.1. The Contractor shall provide necessary information to the Employer/ site engineer so that the tests are conducted and results recorded well.

Kohalpur Nepalgunj 132 kV TLP

APPENDIX - 10.1: FIELD QUALITY PLAN FOR TRANSMISSION LINES

S. No.	Description of Activity	Items to be Checked	Tests/ Checks to be done	Ref. documents	Check/ Testing Agency	Check/Testin g Extent	Counter Check/ Test by Employer	Accepting authority in Employer
1.	Detailed Survey	a. Route alignment	Optimization of route length	a. Preliminary survey.b. Topographical mapc. Tower Spotting Data	Contractor	100% at Field	100% based on record documents	To be notified by the Employer
		b. Route profiling & tower spotting.	 Ground clearance. Cold wt. Span Hot wt. Span Sum of Adj. Span (wind span) Angle of Deviation. 	a. Sag templateb. Tower Spotting datac. Route alignment	Contractor -dododo-	100% at Field -dododo-	100% based on record documents -dodo-	To be notified by the Employer
2.	Check Survey	Tower Location & Final Length	i) Alignment	a. Route alignment	Contractor	100% at Field	i) All angle towers in plains and 50% in	To be notified by the Employer

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

S. No.	Description of Activity	Items to be Checked	Tests/ Checks to be done	Ref. documents	Check/ Testing Agency	Check/Testin g Extent	Counter Check/ Test by Employer	Accepting authority in Employer
			ii) Final Length	b. Tower Schedulec. Profile	-do-	-do-	hilly terrains. ii) Final length to be checked on 100% basis based on records/documents	
3.	Detailed Soil Investigatio n	a. Bore log	 Depth of bore log SPT Test Collection of samples 	As per Employer Specification	Contractor	100% at Field	To witness 20% at Field	To be notified by the Employer
3	Tower Foundation	b. Tests on samples	As per tech. Specs.	As per Employer Specification	Lab appd. By Employer	100% by testing lab	Review of lab test results	To be notified by the Employer
		1. Cement	Source approval	Source meeting Employer Specification/Approv ed vendor	Contractor	As proposed by Contractor	To verify the proposal based on the supply made and factory test results.	-do-
			2. Physical tests	As per specification	Samples to be taken jointly with Employer and tested at Employer approved	Review of all MTC's and one sample for every 500 MT	100% review of lab test results	-do-

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

S. No.	Description of Activity	Items to be Checked	Tests/ Checks to be done	Ref. documents	Check/ Testing Agency	Check/Testin g Extent	Counter Check/ Test by Employer	Accepting authority in Employer
					lab			
			3. Chemical Tests Chemical composition of Cement	-do-	Contractor to submit MTC	100%% review of MTC by Contractor	100% review of MTC	-do-
		2. Reinforcement Steel	Source approval	To be procured from main producers only.	Contractor	As proposed by Contractor	To review the proposal based on the test reports.	-do-
			Physical and Chemical analysis test	As per specification	Contractor to submit MTC	All MTC's	100% review of MTC	-do-
		3. Coarse Aggregates	1. Source approval	Source meeting Employer Specification	Contractor	Proposed by the Contractor, indicating the location of the quarry and based on the test results of Joint samples tested in Employer approved lab	To review the proposal based on the documents	To be notified by the Employer

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

S. No.	Description of Activity	Items to be Checked	Tests/ Checks to be done	Ref. documents	Check/ Testing Agency	Check/Testin g Extent	Counter Check/ Test by Employer	Accepting authority in Employer
			2. Physical tests	As per document at Annexure-3 of this FQP at page 16	Samples to be taken jointly and tested in Employer approved lab	One sample per lot of 200 cum or part thereof	100% review of lab test results	- do-
		4. Fine aggregate	1. Source approval	Source meeting Employer Specification	Contractor	Proposed by the Contractor, indicating the location of the quarry and based on the results of Joint samples tested in Employer approved lab.	To review the proposal based on the documents.	- do-
			2. Physical test	As per Annexure-4 of this FQP at page 17	Samples to be taken jointly and tested in Employer approved lab	One sample per lot of 200 cum or part thereof	100% review of lab test results	- do-
		5. Water	1. Cleanliness	Employer	Contractor	100% visual	Verification at random	- do-

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

S. No.	Description of Activity	Items to be Checked	Tests/ Checks to be done	Ref. documents	Check/ Testing Agency	Check/Testin g Extent	Counter Check/ Test by Employer	Accepting authority in Employer
			(Water shall be fresh and clean)	Specification		check at Field		
			2. Suitability of water for concreting	Employer Specification	Contractor	100% Visual Check at Field	Verification at random	- do-
		Foundation Classification	 Visual observation of soil strata Ground water level History of water table in adj. Area/surface water Soil Investigation wherever required 	Employer Specification	Contractor	100% at Field	100% at Field	- do-
		Bottom of excavated earth	Depth of foundation	Appd. Drawings.	Contractor	100% at Field	100% check by Employer	- do-
		2. Stub setting	1) Centre Line	-do-	-do-	-do-	-do-	-do-
			2) Diagonals					

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

S. No.	Description of Activity	Items to be Checked	Tests/ Checks to be done	Ref. documents	Check/ Testing Agency	Check/Testin g Extent	Counter Check/ Test by Employer	Accepting authority in Employer
4.	Tower Erection	Materials a. Tower member/bolts & nuts/washers/ac cessories	Visual checking for 1. Stacking 2. Cleanliness 3. Galvanizing 4. Damages	Appd. Dwg./BOM	Contractor	100% at stores	100% verification of records	- do-
		2. Erection of Super-structure	Sequence of erection	As per Appd. Drawings/ Employer specification	Contractor	100% at field	100% check	- do-
			2. Check for completeness	-do-	-do-	-do-	-do-	-do-
			3. Tightening of nuts and bolts	-do-	-do-	-do-	-do-	-do-
			Check for verticality	-do-	-do-	-do-	-do-	-do-
			5. Tack welding for bolts & nuts	Employer Specification	Contractor	100% at Field	100% Check	- do-
		3. Tower footing resistance (TFR)	TFR at locations before and after earthing.	Employer Specification	Contractor	100% at Field	20% locations to be verified	- do-

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

S. No.	Description of Activity	Items to be Checked	Tests/ Checks to be done	Ref. documents	Check/ Testing Agency	Check/Testin g Extent	Counter Check/ Test by Employer	Accepting authority in Employer
5.	Stringing	1. Materials						- do-
		a. Insulators	Visual check for cleanliness/glazing/ cracks/and white spots.	Employer Specification	Contractor	100% at Field	100% verification of records and to carry random checks 10%	- do-
			2. IR Value	(min. 50M Ohms)	-do-	One test per sample size of 20 for every lot of 10,000	To verify Contractor's records 100% and joint check 20% of total tests	-do-
			3. E&M test	_	Insulator supplier	a. 20 per 10,000 for discs b. 3 per 1500 for long rod	Collection of samples, sealing them and handing over by Employer to Insulator supplier	Tests to be witnessed/ Appd. at Manufacturer's works
			4. Traceability (Make/batch No./Locations where installed)	Packing list/CIP	Contractor	100% at field	100% Review of records	To be notified by the Employer(NEA)
		b. Conductor	On receipt, 1. Visual check of drum.	Packing list	Contractor	100% at stores	20% check	To be notified by the Employer(NEA)

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

S. No.	Description of Activity	Items to be Checked	Tests/ Checks to be done	Ref. documents	Check/ Testing Agency	Check/Testin g Extent	Counter Check/ Test by Employer	Accepting authority in Employer
			2. Check for seals at both ends, and Employer sticker on outer end	-do-	-do-	-do-	-do-	-do-
			3. Check depth from top of flange to the top of the outer most layer	-do-	-do-	-do-	-do-	-do-
		c. OPGW	Check for seals at both ends	Packing list	Contractor	100% at stores	20% check	-do-
		2. Field activity						
		a. Before Stringing	Readiness for stringing	Stringing procedures as per Employer specification	Contractor	Readiness certificate to be submitted by the Contractor	Review of Certificate	-do-
		b. During stringing	(Conductor /OPGW)					-do-
			Scratch/cut check (Visual)	Appd. Drawings/ Employer Specification.	Contractor	100% at Field	100% record & Field check 20%	-do-

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

S. No.	Description of Activity	Items to be Checked	Tests/ Checks to be done	Ref. documents	Check/ Testing Agency	Check/Testin g Extent	Counter Check/ Test by Employer	Accepting authority in Employer
			2. Repair sleeve	-do-	-do-	-do-	-do-	-do-
			3. Mid span Joints	-do-	-do-	-do-	-do-	-do-
			4. Guying (in case of towers not designed for one side stringing)	Appd. Guying arrangement/ Employer specification.	-do-	-do-	100%	-do-
		c. After stringing	Check for,					
			1. Sag/Tension	Sag tension chart/tower Spotting data	-do-	-do-	100% record & Field check 20%	-do-
			2. Electrical clearances	As per appd. Drawings/ Employer specifications	-do-	-do-	-do-	-do-
			i) Ground clearance	-do-	-do-	-do-	-do-	-do-
			ii) Live metal clearance etc.	-do-	-do-	-do-	-do-	-do-
			3. Jumpering	-do-	-do-	-do-	-do-	-do-

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

S. No.	Description of Activity	Items to be Checked	Tests/ C be done	Checks to	Ref. documents	Check/ Testing Agency	Check/Testin g Extent	Counter Check/ Test by Employer	Accepting authority in Employer
			4. bond	Copper	As per Appd. Drawings/ Employer Specification	Contractor	100% at Field	100% record & Field Check 20%	-do-
			5. of damp	Placement er	As per Specification/ drawings/ placement chart	-do-	-do-	-do-	-do-

Procurement of Plant

Kohalpur Nepalguni 132 kV TLP

APPENDIX - 10.2: PRE - COMMISSIONING PROCEDURES FOR TRANSMISSION LINES

1.1 Introduction

Over all procedure, safety rules, Statutory Requirements, dispatch procedures, switching sequences, observations, passing criteria and documentation of test results have been documented in this APPENDIX-II

The detailed inspection and handing over documents are required to be checked for the entire length of transmission line before energization.

The detailed inspection/ test procedures for each activity have been elaborated in Chapter 10 and Appendix-I separate section of this documentation. The contents are as following:

- 1. Definition
- 2. Overall Procedures
- 3. Safety procedures
- 4. Inspection
- 5. Statutory Requirements
- 6. Handing over
- 7. Protective system
- 8. Dispatch procedures
- 9. Switching procedures
- 10. Testing
- 11. Energization
- 12. De-energization
- 13. Observations and duration
- 14. Passing criteria
- 15. Documentation

1.2 Definition

"Main Transmission Lines" means all high pressure cables and overhead lines (not being an essential part of the distribution system of a licensee) transmitting electricity from a generating station to another generating station or a sub-station, together with any step-up and step-down transformers, switch-gear and other works necessary to and used for the control of such cables or overhead lines, and such buildings or part thereof as may be required to accommodate such transformers, switch-gear and other works and the operating staff thereof;

"Power System" means a system under the control of the Government or any other statutory body of Generating Company or other agency and having one or more:-

- Generating station; Or
- Main transmission lines and sub-stations; Or
- Generating stations and main transmission lines and substations;

"Load Dispatch Centre" means the Centre so designated where the operation of Integrated Nepal Power System constituting the country's power system is coordinated;

"Sub-Station" means a station for transforming or converting electricity for the transmission or distribution thereof and includes transformers, convertors, switch-gear, capacitors, synchronous condensers, structures cables and other appurtenant equipments and any buildings used for that purpose and the site

Kohalpur Nepalguni 132 kV TLP

thereof, a site intended to be used for any such purpose and any buildings used for housing the staff of the sub section;

"Tie-Line" means a line for the transfer of electricity between two power systems together with switchgear and other works necessary to, and used for the control of such line.

1.3 Overall Procedure

First it is to be ascertained that the transmission line to be energized is ready for operation and has been properly handed over (released) in writing. This will include all safety aspects, statutory clearance, and final inspection by the Employer and regulatory body, if any.

Instructions for the work and supervision are given by the test leader (Line in charge). However all switching and all operational activities will be executed by the regular operators.

Line charging instructions received from LDC are clearly understood by the Line in charge and doubts, if any, are to be got clarified prior to the energisation of the line.

Once the line is handed over for charging no work shall be permitted without a valid WORKPERMIT.

When the whole system has been energized, including the AC line, it will be kept in this state for 8 hours or more for "soaking" with continuous inspection and monitoring.

1.4 Safety Procedures

Energization implies an abrupt and serious change of the working conditions in the plant. In order to avoid serious accidents, thorough information must be imparted to all personnel involved in the construction of transmission line. It should be ensured that due publicity has been made to the public in all the villages/ areas along the line route cautioning them against climbing the towers etc. and that the line is proposed to be charged on so and so date. It is also to be confirmed that the AGENCIES involved in the construction activities shall not carry out any job on the said line without a valid WORK PERMIT.

It shall be ensured before charging that all men, material, Tools and plants and any temporary earthing on any part of the entire length of line are removed.

It must be ensured that any power supply/ low voltage charging used as anti-theft measure must be disconnected and isolated to avoid accidental connection.

All equipment tests and pre-commissioning tests must have been completed, terminated (in case cables were isolated for testing purpose) and documented.

The system must be formally declared ready for energization and handed over for operation in writing.

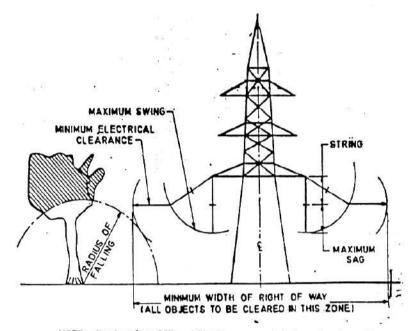
1.5 Inspection

Before the line is scheduled to be handed over for the pre-commissioning/ energization the same shall be inspected by representatives of EMPLOYER and Construction Agency as follows:

Such an inspection shall include:

- I. Right of way/ way leave/ electrical clearance
- II. Foundation and Revetments/ Protection Work
- III. Tower and Tower accessories
- IV. Hardware Fittings
- V. Insulators
- VI. Conductors and Earth wire

Kohalpur Nepalgunj 132 kV TLP


VII. Accessories for conductor and Earth wire

VIII. Aviation Warning Signals (Lights/ globules/ painting)

1.5.1 Right of Way/ Way Leave/ Clearance

Right of way/ Way leave clearance

Ensure that no tree/ tree branches are falling within the zone of minimum clearance specified as per Fig. 1.

. NOTE — Portion of tree falling within elemence zone to be lopped or trimmed,
FIG. 1 LINE CLEARANCE (RIGHT-OF-WAY) REQUIREMENTS

Guidelines of forest/ environmental rules shall be followed to avoid excessive tree cutting i.e. all the trees should be cut from ROUTE level in the 3 meter corridor below each line Conductor/ Earth wires. In the balance corridor, Trees branches are only to be lopped to attain the specified clearance as per Table no 1.

CLEARANCE FOR RIGHT OF WAY

TRANSMISSION VOLTAGE IN KV	MINIMUM RIGHT OF WAY (IN MTRS)
132	27

1.5.2 Electrical Clearance

In case of line crossings, clearance between lowest conductor of line and top conductor of the other line shall be adequate as per CBIP Transmission Line Manual: Jumpers in the tension tower are properly intact with conductor and form a parabolic shape in order to achieve adequate clearance from super steel structure.

1.5.3 Ground clearance

Normally at the time of construction adequate clearance is provided between lowest conductor and ground, but due to delay in charging/ commissioning there are chances of dumping/ heaping soil, earth and concrete etc. or staking bricks etc. which may cause reduction in ground clearance. In such cases the stored materials shall be removed.

Kohalpur Nepalguni 132 kV TLP

Ensure that there is no temporary or permanent construction of houses or shades below the line. If the same has been constructed they shall be removed before charging.

The ground profile at the time of commissioning shall be checked with the profile approved at the time of check survey.

Ground clearance of lowest conductors at critical points/ where ever the lowest conductor is touching the ground shall be checked in the field from any of the prevalent method and the values of ground clearance at these critical points shall be recorded in the prescribed format.

In case of hilly Terrain and for building clearance, the side clearance from conductors and jumpers at critical points shall also be checked and recorded for all phases of conductor/ earth wire towards hill/building side.

1.5.4 Clearance for Telephone line crossings

The minimum clearances between the conductors of the power line and telecommunication lines are as per CBIP Transmission Line Manual.

1.6 Foundation and Revetments/ Protection Work

1.6.1 Foundation

There shall not be any damage/ uneven settlement of foundations. For this, tolerances in levels of all four stubs should not exceed the criteria provided in the Annexure-C of IS -5613 (Part -3/Section 2):1989.***

It is to be ensured that back filling of foundation is properly done. Soil shall be filled over all legs up to ground level.

Extra surface earth after foundation back filling shall be removed from legs of the tower beyond a lead distance of 30 metres. Any crack or break in chimney, if found, shall be repaired.

1.6.2 Revetments/ Protection

Cracks/ damages to revetments shall be repaired.

Wherever revetments are provided, weep holes shall have slope such as to flush out the deposited water away from tower platform.

In case of hilly terrain, the benching area should be levelled properly. The area around tower shall have proper slope for drainage of rain water.

1.7 Tower and Tower Accessories

1.7.1 Normal Tower

After completion of a transmission line, all the towers shall be thoroughly checked before charging the line. Special attention shall be given to the points as mentioned below:-

Deformed/ Buckled/ missing/ Rusted Members and Nuts and Bolts

It is to be ensured that no members are bend, deformed or rusted have been used in towers and if so, the same shall be replaced.

If any members is found missing, a new member shall be Fixed as per erection drawing of Towers.

Nuts shall be sufficiently tightened for the required Torque specified in the Approved Drawing. Minimum 2/3 complete threads shall be projected outside the nut. All bolts shall have their nuts facing outside of the tower for Horizontal connection and Downwards for Vertical connections.

Kohalpur Nepalguni 132 kV TLP

Nuts & bolts shall be properly tack welded/ punched as per the specification and proper zinc rich paint shall be applied. It shall be ensured that the circular length of each welding shall be at least 10mm.

It shall also be ensured that all extra blank holes provided on tower members are filled with correct size of nuts & bolts.

1.7.2 Special Towers

In addition to the above checks for towers, ladders and platforms provided in special towers shall be properly tightened and no foreign material shall be left out on such platforms.

1.7.3 Earthing of Towers

Ensure that proper earthing of tower has been done and earthing strip is neither damaged nor broken and is properly fixed to the stub.

In case of counter poise earthing, it is to be ensured that earth wire is sufficiently buried in the ground and no where it has drag out during cultivation. The length of counter-poise is normally 30 meters as per Technical Specification.

Before charging of the line, ensure that resistance is below 10 ohms. If the value (before stringing) has been recorded higher than 10 ohm earthing shall be changed to counterpoise type.

Earthing of special towers shall be verified as per approved drawings applicable for special towers/ special foundation. (In case of anchor foundation bolt/ anchor plate welded with last leg of special tower.)

1.7.4 Tower accessories

All the danger plates, number plates, circuit plates, and phase plates shall be in position & and as per the specification.

All plates shall be properly tightened.

It shall be ensured that phase plates are fixed in correct phase sequence. Especially at transposition towers, the phase plates in the correct phase sequence shall be provided at each towers or end tower as per the specification of the line.

It shall be ensured that the anti-climbing device (ACD) is provided, at the suitable height of tower. In case of barbed wire ACD, barbed wire shall be tightly fixed.

It shall be ensured that the step bolts (for normal towers) are provided up to the peak of tower. Any missing step bolts shall be replaced.

Fixing of birds guards (wherever applicable) shall be ensured.

1.8 Hardware Fittings

Tightening of all bolts and nuts are to be checked up to specified torque.

Check the fixing of all security clips (W/R type clips).

Surface condition of corona control rings and distance/ alignment between Tower side arcing horn (wherever applicable) and line side arcing horn/ corona control ring to be checked as per approved drawings.

To restrict the swing of jumpers, the provision of Pilot strings in case of Tension Towers shall be verified from the approved drawings.

Kohalpur Nepalguni 132 kV TLP

1.9 Insulators

All the damaged/ broken insulator discs shall be replaced. Unusual deflection in suspension strings if observed shall be rectified using appropriate counter weights.

The insulators shall be cleaned before charging.

IR value of insulators of at least 5 insulators at random shall be checked by 5/10 kV Megger.

1.10 Conductors and Earth Wires

Surface of the conductors shall be free from scratches/ rubs. Ensure that conductor strands are not cut and opened up. Wherever strands are found cut/ damaged/ scratched, they must be repaired with repair sleeves/ repair protective rods in case the nos. of damaged strands are within specified limits (normally up to 1/6th nos. of strands in the outer layer).

1.11 Accessories for Conductor and Earth Wires

1.11.1 Joints

All joints on conductor/ earth wires shall be away from the tower at a distance of at least 30 metres or as provided in the Technical specification (TS).

Ensure that no more than one joint in a conductor is provided in one span.

Ensure that no mid span joint is provided in major crossings for main roads, railway crossing and major rivers etc. or as provided in Technical Specification.

Ensure that all mid span joints on conductors/ earth wire and repair sleeves of compression type are free from sharp edges, rust and dust. Wherever grease are specified the same shall be applied in the joints.

1.11.2 Clipping

Ensure that conductor is not over tightened in the suspension clamps

Spacers, vibration dampers and copper bonds.

Vibration Dampers (VD, shall be verified as per the damper placement chart. All loose/ displaced VD shall be properly tightened / relocated and missing VDs shall be provided.

1.11.3 Jumpers

Verify Electrical clearance of jumpers to tower body as per design.

All the jumpers shall be checked properly. In case, jumpers (conductor/ earth wire) are found loose, it shall be tightened adequately.

1.11.4 Foreign material

Ensure that all foreign materials via dead bird. Fallen tree branches, bird nests etc. on conductors, earth wires, Jumper, insulator string, cross arms are re-moved.

1.11.5 Others

It shall be ensured that all temporary/ local earthing, guys, T & P (Tools and Plants), foreign material and other loose material which were used during stringing/ tower erection have been removed.

Kohalpur Nepalguni 132 kV TLP

In case there is any change in the ground profile before commissioning of line from the approved profile, the extra earth/ obstruction/ temporary sheds/ any other construction shall be removed.

1.12 Aviation Warning/ Obstruction Signals (Lights/ Globules/ Painting)

It shall be ensured that following measures have been taken in the line/ Towers falling within obstruction zone of civil aviation and defence establishments as per their requirement and the specification.

1.12.1 Day markers

Painting of Full/ Top portion of Towers with Red/ Orange and White Paints.

Globules on earth wires have been provided.

1.12.2 Night markers

It shall be ensured that proper aviation lights at the peak level/ at specified heights of towers have been provided along with Solar panels/ Battery banks/ Control cubicles and other accessories as per specification. The functioning of lights with simulation to be checked/ verified.

1.13 Statutory Requirement

The concerned authorities shall be informed before commissioning the lines and their approval obtained in accordance with Statutory Provisions.

1.14 Handing Over

The transmission line shall be inspected prior to energization and a formal handing over document to be jointly signed by the Employer and Employer's representative. However all contractual taking over has to be resolved separately as per the terms and conditions of the contract. The Handing over shall be limited to the completion of Erection and ready for Energization.

Any outstanding points or remaining activities are to be listed jointly. The remaining activities/ outstanding points are classified in the following category:

Details of the Sections:

- A. List of outstanding activities remaining in any part of the line
- B. A list of temporary arrangements introduced.
- C. Check list records properly documented, completed and signed.
- D. Soft copies of Profile, Route Alignment, Tower Design, Structural Drawings, Bill of Materials, Shop Drawings, Stringing charts (initial and final as applicable) etc. of all towers/ line submitted to the Employer.

With the outstanding activities mentioned above are solved or with only minor points without influence on the charging remain, handing over of the transmission line shall be accepted by the precommissioning team. This handing over for energization with or without remaining activities shall be made by the group head to the commissioning in charge in writing.

1.15 Protective System

Before energization it must be ascertained that all protective systems for the unit to be energized are operative.

This includes confirmation that the protections have been properly tested and that the tests have been documented.

Kohalpur Nepalguni 132 kV TLP

It also includes verification by inspection or otherwise, if necessary by repetition of trip test, that the protections are actually functionally enabled. This verification serves to prevent that energization takes place of a unit where a protection has been disabled for test or other reason.

1.16 Switching Procedure

For each activity the instructions to the operators and the communications to the dispatchers will be made in writing or by confirmed telephone messages. The switching procedures first to be properly documented step by step and understood by everybody involved in the switching operation prior to the energisation. Any clarification required in the procedures must be resolved. The format established by the Employer for switching orders and operational data logging shall be followed.

The implication of this is that each and every activity must be listed and described, so that complete information is available for detail investigation, if required in future.

1.17 Testing and Measurement Procedures

1.17.1 Earth Resistance Measurement

Normally Earth tester is used for measuring:

a. Soil resistivity

Prior to the testing of soil resistivity and earth resistance the operation manual of the testing instrument available at site may be referred and procedures to be adopted for measurement of soil resistivity and earth resistance.

A typical Earth tester has 4 terminals. C1, P1, C2, P2 and 4 similar electrodes are driven in the ground at equal distances and connected to the instruments in the order of C1' P1 and P2, C2. Then the handle is rotated or button is pressed and the reading of the resistance is read on the instrument scale. If R is the resistance measured then the

Specific resistivity = $2 \pi aR$

Where "a" is the distance between the electrode and R is the resistance in ohms measured on the instrument.

b. Earth resistance

In order to measure earth resistance of electrode of the substation it could be connected to C1 and the value of R could be read in the scale with the rotation of the handle of the instrument. This will give the earth resistance. The value as far as possible shall be below 10 Ohm. To improve the value, water shall be sprinkle at the earthing pit.

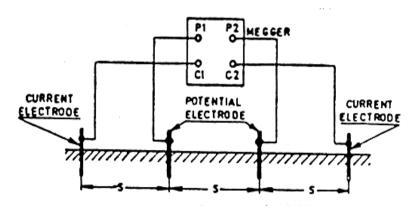


fig: 2 Test connection for a four terminal Megger

Kohalpur Nepalguni 132 kV TLP

1.17.2 Other Tests

Before commissioning of the lines following tests may be carried out.

Insulation Resistance Test

This test may be carried out with the help of a 10 or 12 kV instrument preferably power driven to ascertain the insulation condition of the line. In case 5 kV instrument is used for insulation resistance measurement it shall be ensured that the induced voltage (CVT reading) is LESS than the instrument withstanding capacity otherwise it is likely that the instrument may be damaged.

This Test is to be carried out First prior to the continuity test.

Measurement of Insulation Resistance

One of the most common devices used for testing electrical insulation is Instrument Insulation Tester.

The DC test voltage is generated by a permanent magnet generator. This generator is turned either by hand or by an electric motor. In either case a slip clutch maintains the generator speed at a constant value so long as the slipping speed is exceeded. A constant voltage is important when the insulation under test has a high capacitance. Common generator output voltage are 500, 1000, 2500 and 5000 volts.

Many insulation tester have a "guard" terminal as well as "line" and "earth". The guard terminal is useful shall one wish to exclude part of the insulation under test from the measurement. This is possible since current flowing to the generator via the guard circuit does not pass through the deflecting coil.

Another use of the guard circuit is to shield the "line" lead between the insulation tester and the apparatus under test. This prevents leakage to ground from the "line" lead which would invalidate the insulation tester reading.

Insulation resistance is the ratio VDC/IDC.VDC is applied across two conductors separately by the insulation under test.

IDC is the current flowing through/over the insulation. For a healthy and clean insulation the insulation tester reading is in mega-Ohms to infinity. For dirty in, insulation and defective, moist insulation the insulation tester shows a very low insulation resistance value.

Insulation tester test gives clear indication about the health, cleanliness and dryness of the line/equipment insulation.

5 KV insulation tester or 10 KV insulation tester or 12 KV insulation tester may be used for the Transmission line keeping all safety requirements, Permit to work, clearance from statutory bodies and other conditions prevailing at the Sub-station where charging of the line is being co-ordinated.

Conductor Continuity Test

The objective of this test is to verify that each conductor of the overhead line properly connected electrically (the value of electrical resistance of line does not vary abnormally from that of a continuous conductor of the same size and length). The electrical resistance of the conductor shall be measured with a Whetstone bridge or other suitable instrument, if available taking the safety aspects of Equipment as well as testing Engineer.

A simple method of continuity test is illustrated below:

Once the insulation test is completed and the results confirms no short circuit carry the following:

SENDING END RECEIVING END RESULTS (OHMS)

Kohalpur Nepalgunj 132 kV TLP

CLOSE R-Ph GS	Insulation Resistance R- Ph	ZERO/LOW
OPEN Y - Ph GS	Insulation Resistance Y-Ph	HIGH
OPEN B-Ph GS	Insulation Resistance B-Ph	HIGH
OPEN R-Ph GS	Insulation Resistance R-Ph	HIGH
CLOSE Y - Ph GS	Insulation Resistance Y-Ph	ZERO/LOW
OPEN B-Ph GS	Insulation Resistance B-Ph	HIGH
OPEN R-Ph GS	Insulation Resistance R-Ph	HIGH
OPEN Y-Ph GS	Insulation Resistance Y-Ph	HIGH
CLOSE B-Ph GS	Insulation Resistance B-Ph	ZERO/LOW

Notes:

- 1. GS means GROUND SWITCH.
- 2. During above test all other GS shall remain open.

If the above test results are OK it confirms the continuity of the line.

The continuity Test of the line with proper phase indication or phase marking can be checked by continuity test as described below:

SENDING END	RECEIVING END INSULATION RESISTANCE BETWEEN	RESULTS (OHMS)
CONNECT R&Y PHASE	R PHASE & Y PH	ZERO OR LOW
B-PHASE & ALL GS OPEN	Y PHASE & B PH	HIGH
	B PHASE & R PH	HIGH
CONNECT R & B PHASE	R PHASE & Y PH	HIGH
Y PHASE & ALL GS OPEN	Y PHASE & B PH	HIGH
	B PHASE & R PH	ZERO OR LOW
CONNECT Y & B PHASE	R PHASE & Y PH	HIGH
R-PHASE & ALL GS OPEN	Y PHASE & B PH	ZERO OR LOW
	B PHASE & R PH	HIGH

If the test results are OK it confirms that marking of the phases are in order.

Phase Sequence

Once the line is charged from one end, without closing the Breaker at the other end the Phase sequence is to be checked from the CVT/ PT output by the help of Phase Sequence Meter.

In case there are other feeders available Phase sequence is to be RECHECKED by the measurement of secondary voltage of both the Feeders (New line & available charged line).

Let the secondary Voltage of CVT/ PT is 110 volts (ph to ph) for both the Circuit. In case of correct Phase Sequence the voltage reading shall be as follows:

Kohalpur Nepalgunj 132 kV TLP

NEW CIRCUIT	OLD CIRCUIT	VOLTAGE
R-Phase	R-Phase	0
R-Phase	Y-Phase	110
R-Phase	B-Phase	110
Y-Phase	R-Phase	110
Y-Phase	Y-Phase	0
Y-Phase	B-Phase	110
B-Phase	R-Phase	110
B-Phase	Y-Phase	110
B-Phase	B-Phase	0

In case the results are not matching the phase sequence in to be rechecked and reconfirmed before closing the breaker.

1.18 Energization

Execution of the energization is simply the last event in the switching sequence, switching of the close control button for the relevant circuit breaker.

1.19 De-Energization

Instructions about de-energization will be given only if this is part of the test. Otherwise de-energization will be considered part of regular operation.

1.20 Observation and Duration

Visual and audible inspection (look and listen) of the relevant equipment and reading of permanent instrumentation will be made.

The system shall be charged at least for 8 hours. During this time continuous monitoring and inspection will be maintained in control room, auxiliary systems areas and switch yards.

This will include frequent, scheduled inspection of all equipment and reading of all permanent instruments and recorders, and surge arrester counters, especially system parameters as per standard procedures adopted by the Employer.

1.21 Passing Criteria

Neither insulation breakdown nor protective system actions must occur. No irregular equipment behaviour (noise, vibration, high temperature) is permitted.

Corona discharges may not be "unreasonable". Local discharges that may be attributable to sharp points shall be carefully located and recorded. After termination of the energization the equipment shall be closely inspected and the points rounded or covered.

No unscheduled changes of system nor of equipment parameters is permitted during the 8 hour energized condition.

Kohalpur Nepalgunj 132 kV TLP

Measurement of Line Parameters

The Contractor shall conduct measurement of Line parameters as per international practice.

High voltage Tests

The Contractor shall conduct high voltage tests as per international practice.

1.22 Documentation

Switching and operational activities will be recorded in regular manner in the operator's log. Likewise all readings of permanent instruments, Copies of this log, notes on special observations from inspections and other measurements will constitute the test records.

i

Turnkey Bidding Document

Kohalpur Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 11 TECHNICAL SCHEDULE

Kohalpur Nepalgunj 132 kV TLP

TABLE OF CONTENTS

11	TECHNICAL SCHEDULE	2
11.1	Schedule A.1	2
11.2	Schedule A.2	2
11.3	Schedule A.3	3
11.4	Schedule A.4	4
11.5	Schedule A.5	5
11.6	Schedule A.6	5
11.7	Schedule A.7	6
11.8	Schedule A.8	7
11.9	Schedule A.9	7
11.10	Schedule A.10	8
11.11	Schedule A.11	ç
11.12	Schedule A.12	g
11.13	Schedule A.13	10
11 14	Schedule A 14	11

Kohalpur Nepalgunj 132 kV TLP

11 TECHNICAL SCHEDULE

11.1 Schedule A.1

System and Line Data

ITEM	DESCRIPTION	UNIT	DATA
1.	System Data		
1.1	System Nominal Voltage	kV	132
1.2	System Maximum Voltage	kV	145
1.3	System Nominal frequency	Hz	50
1.4	Line Data		
1.4.1	Kohalpur Nepalgunj 132 kV Double Circuit Tower	Km	10
1.4.2	Line Conductor		ACSR - BEAR
1.4.3	Ground Wire		OPGW

Altitude and Basic Insulation Level

The proposed 132 kV Transmission line traverses through plain landscape of Banke district of Nepal. The variations of altitudes of the proposed 132 kV transmission line ranges from approximately 146.13 m to 158.1 m above MSL.

132 kV Transmission Lines in different altitude zones shall be designed in compliance with the following Basic Insulation Levels (BIL)

Altitude Zone	Highest Voltage for Equipment U _m in kV	frequency	ation power withstand (rms value)	vo	mpulse withstand Itage – kV eak value)
(rms value)		Required	Selected	Required	Selected
Altitude up to and including 2100 m	145	317	325	749.4	750

11.2 Schedule A.2

DESIGN DATA

Kohalpur Nepalgunj 132 kV TLP

ITEM	DESCRIPTION	UNIT	DATA
1.	Temperature		
1.1	Maximum ambient temperature	₀ C	35
1.2	Minimum ambient temperature	₀ C	0
1.3	Maximum temperature of conductor	₀ C	85
1.4	Everyday temperature of conductor	₀ C	32

Wind Load

ITEM	DESCRIPTION	UNIT	DATA
1.	Temperature		
1.1	Design Wind Speed (Vd)	m/s	47 (Wind Zone:4 as per IS:802)
1.2	Reliability Level		1 (50 yrs return period)
1.3	Risk Co-efficient (k1)		1
1.4	Terrain Roughness Co-efficient (K2)		1.08

But Gust factors corresponding to terrain category –II shall be considered for conductors/ earth wire, Tower and Insulator for arriving the wind load.

The corresponding Design Wind Pressure on towers, conductors and insulators shall be obtained from the relation $Pd=0.6V^2$.

11.3 Schedule A.3

MINIMUM CLEARANCES

The followings are the minimum clearances between live conductors and other objects, which correspond to the maximum conductor sag conditions at different altitude zones.

ITEM	DESCRIPTION	Clearance
1.	Normal ground for pedestrians only	6.5
2.	. Residential areas 6.5	
3.	Roads and streets	7.0
4.	Highways	7.5
5.	To metal clad or roofed buildings or building or	6.0

Kohalpur Nepalgunj 132 kV TLP

	structures upon which a man may stand	
6.	Power lines (above or below)	3.5
7.	Telecommunication lines	3.5
8.	River and other areas (above maximum flood)	6.5

For other objects not listed in the Schedule the requirements for minimum clearances shall comply also with NESC (NATIONAL ELECTRIC SAFETY CODE).

Approximately 0.5m shall be added to the clearance values above to allow for survey and drawings errors.

Crossing of houses, huts and other objects with soft roofing is not allowed.

11.4 Schedule A.4

TOWER TYPES

Altitude more than 900 to 2600m	Deviation Angle	Typical Use
QA	0 deg2 deg.	To be used as tangent Tower up to 2 deg deviation
QB	0 deg15 deg	a) Tension Tower with Angle deviation from 0 to 15 deg.b) Section towerc) To be designed for anti- cascading condition.
QC	15 deg30 deg	 a) Tension Tower with Angle deviation from 15 to 30 deg b) Tension tower for uplift forces resulting from a uplift span as per weight span specified in Schedule-A4, Section-11. c) To be designed for anti-cascading condition.
QD/DD/DES	30 deg60 deg	 a) Tension tower Angle deviation from 30 to 60 deg. b) Tension towers for uplift forces resulting from an uplift spam as per weight span specified in Schedule-A4, Section-11. c) Complete Dead end with 0 to 15 Degree deviation on
QF Above 60 deg and up to 90 deg.		both sides.d) For river crossing anchoring with longer wind span with 0 deg deviation on crossing span side and 0 to 30 deg deviations on other side.
	9.	a) Tension tower Angle deviation above 60 deg and up to 90 deg.b) Tension towers for uplift forces resulting from an uplift spam as per weight span specified in Schedule-A4, Section-11.

Kohalpur Nepalgunj 132 kV TLP

2.	DESIGN SPANS				WEIGHT SPAN (m)		
ITEM	TOWER TYPE DOUBLE CIRCUIT	BASIC SPAN (m)	WIND SPAN (m)	Normal Condition (Maximum)	Normal Condition (Minimum)	Broken Wire Condition (Maximum)	Broken Wire Condition (Minimum)
2.1	QA	350	350	488	208	192	104
2.2	QB	350	350	960	-960	576	-576
2.3	QC	350	350	960	-960	576	-576
2.4 2.5	QD/DD/ DDES DF	350 350	350 350	1460 2000	-1460 -2000	876 1200	-876 -1200

11.5 Schedule A.5

TOWER OUTLINE CONFIGURATION

Refer Drawing No. DWG011.

11.6 Schedule A.6

FACTOR OF SAFETY

ITEM	DESCRIPTION	MINIMUM FACTOR OF SAFETY
1.	Tower Foundations	
1.1	All types of suspension (QA) and small angle (QB) towers	1.1
1.2	All types of other tension towers (QC, QD, DD/ DDES)	1.2
2.	Conductors and Insulators	
2.1	Conductors based on ultimate tensile strength	2.0
2.2	Conductors based on ultimate tensile strength at still air every –day temperatures	4.5
2.3	Compete insulator strings and fittings on minimum breaking load of insulator	3.3
2.4	Dead end compression clamps and compression splices based on conductor ultimate tensile strength	0.95
3.	Ground Wires	
3.1	Ground wire based on earth wire ultimate tensile strength	2.0

Kohalpur Nepalgunj 132 kV TLP

3.2	Ground wire at still air everyday temperature based on earth wire ultimate tensile strength	5.0
3.3	Complete tension assembly at ground wire maximum working tension	4.0
3.4	Complete suspension assembly at maximum vertical load	4.0

11.7 Schedule A.7

TOWER PARTICULARS

ITEM	DESCRIPTION	UNIT	MINIMUM VALUES	
1.	Unit Stresses			
	The quality of steel used for support members and bolts			
1.1	Structural Steel:			
1.1.1	Structural Members			
	i. Tension based on net sectional area (MS)	kg/cm ²	2600	
	ii. Tension based on net sectional area (HT)	kg/cm ²	3600	
	iii. Axial compression based on gross sectional area	kg/cm²	As per IS:802	
1.1.2	Connection bolts			
	i. Shear on gross area (Class 5.6)	kg/cm ²	3160	
	ii. Bearing (on Mild Steel) (Class 5.6)	kg/cm ²	4440	
	iii. Tension on net area of threaded portion (Class 5.6)	kg/cm²	2590	
2	Slenderness Ratios (L/R)			
	The slenderness ratio of unsupported length of steel compression members to their least radius of gyration.			
2.1	Main members	NA	120	
2.2	Braces	NA	200	
2.3	Redundant members	NA	250	
2.4	Members loaded in tension only	NA	400	

Kohalpur Nepalgunj 132 kV TLP

11.8 Schedule A.8

TOWER MEMBERS PARTICULARS

The minimum thickness and diameter of material used in members and bolts shall be as follows:

ITEM	DESCRIPTION	UNIT	MAXIMUM VALUES
1.	Calculated members	mm	45x45x4
2.	Redundant members	mm	45x45x4
3.	Thickness of legs, members in cross arms and in ground wire peaks	mm	6
4.	Diameter of bolts for member carrying stress	mm	16
5.	Diameter of bolts for redundant members without calculated stress	mm	16
6.	Gusset plates	mm	6
7.	Stub angles	mm	8

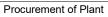
11.9 Schedule A.9

LONG ROD POLYMERIC INSULATORS

The minimum thickness and diameter of material used in members and bolts shall be as follows:

ITEM	DESCRIPTION	UNIT		
			Altitude ≤ 1,000m	Altitude ≥2,160 m
1.	Insulator type		Composite Log Rod	
2.	Highest system voltage	kV	145	
3.	System frequency	Hz		50
4.	Rated lightning impulse withstand voltage	kV_{peak}	750	950
5.	Rated power frequency withstand voltage(wet)	kV _{rms}	325	395
6.	Minimum Creepage distance as multiplied arcing distance	-	3.5	
7.	Minimum mechanical failing load			

Kohalpur Nepalgunj 132 kV TLP


ITEM	DESCRIPTION	UNIT		
			Altitude ≤ 1,000m	Altitude ≥2,160 m
7.1	Suspension rod	kN		90
7.2	Tension rod	kN		160
8	Factor of safety under maximum loading condition			
8.1	Insulator set			3.3
8.2	Fittings			4.0
9.	Overall length of insulator string		As	per standards
10.	Standards			IS/ IEC

11.10 Schedule A.10

LINE CONDUCTOR

ITEM	DESCRIPTION	UNIT	DATA
1.	ACSR "BEAR"		
1.1	Conductor size	mm ²	326.1
1.2	Conductor type		ACSR BEAR
1.3	Number and size of wires		
1.3.1	Aluminum	No. Dia mm	30 3.38
	1 st Aluminum Layer	No.	18
	2 nd Aluminum Layer	No.	12
1.3.2	Steel	No. Dia mm	7 3.35
	Core Steel	No.	1
	1 st Steel Layer	No.	6
1.4	Cross section		
1.4.1	Aluminum	mm ²	264.4
1.4.2	Steel	mm ²	61.7
1.4.3	Total	mm ²	326.1
1.5	Conductor diameter	mm	23.45
1.6	Ultimate strength	Kg	11,340
1.7	Standard mass of conductor	Kg/km	1214
1.8	Electrical D.C. resistance at 20 ®C	Ohm/km	0.1093
1.9	Standard un jointed length on reel	m	2,000
1.10	Modulus of Elasticity	kg/Sq mm	8,200
1.11	Mass of zinc coating	gm/sq. m	195
1.12	Co-efficient of Linear Expansion	per °C	17.8 x 10 ⁻⁶
1.13	Direction of Lay of outer	-	Right Hand

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Single-Stage: Two-Envelope

Kohalpur Nepalgunj 132 kV TLP

ITEM	DESCRIPTION	UNIT	DATA
1.14	Standards	BS 215 PART 2 IEC 1089 / IS	S 398 PART 2

11.11 Schedule A.11

OPTICAL FIBER GROUND WIRE (OPGW)

ITEM	DESCRIPTION	UNIT	DATA
1.	Outer diameter	mm	11.4
2.	Breaking load	kN	86.6
3.	Modulus of elasticity	kN/mm ²	162
4.	Coefficient of thermal expansion	1/degree K	3.0 X 10 ⁻⁶
5.	Nominal short time current capacity at initial/final temperature 20/200 °C	kA	5.5
6.	DC resistance at 20 °C	Ohm/km	1.247
7.	Single mode fiber	ITU-T G.652	
8.	No. of single mode optical fibers		24
9.	Fiber attenuation at		
9.1	1310 nm at 20°C max.	dB/km	0.4
9.2	1550 nm at 20°C max.	dB/km	0.25
10.	Attenuation deviation at 1310 nm and 1550 nm	dB/km	0.1 (within -45°C to 80°C)
11.	Standards		
11.1	Aluminum alloy wires	IEC 104 type A	
11.2	Aluminum clad steel wire	IEC 1232	
11.3	Cable construction	IEC 1089	
11.4	Optical Unit	ITU-T (former CCIT) G 652	2

11.12 Schedule A.12

MATERIAL FOR TOWER GROUNDING

ITEM	DESCRIPTION	DATA
1.	Ground rods	
1.1	Galvanized steel angle	50 x 50 x 5mm steel angles 2m long
2.	Ground wire	
2.1	Galvanized steel wire/ strip	38mm² / strip 7/2.6mm
3.	Connection of ground electrode with stub angle	
3.1	For connection of steel angle:	Steel wire as above

Kohalpur Nepalgunj 132 kV TLP

11.13 Schedule A.13

FOUNDATION APPLICATION SCHEDULE

FOUNDATION TYPE	APPLICATION	SOIL DESCRIPTION
I. "Spread Footing"	For use with all 132kV lattice tower types QA QB	Soil capable of being excavated with vertical wall limit bearing capacity 2.5 kg/ sq.cm. Assume cone of earth 30 degrees.
	QC QD/ DDES DF	Dry Cohesive Material – Stiff clay. Some silt and sand. Not readily excavated by shovel alone. Cannot be moulded by finger pressure and intended by thumb. Blow count 8 to 10.
		Granular Material- Compacted sand. Some silt and gravel. Difficult to excavate by shovel alone. Relative density over 60%. Blow count 10 to 20.
II "Spread Footing"	For use with all 132kV lattice tower types DB	Soil capable of being excavated without appreciable sloughing. Limit Bearing Capacity 1.25 kg/sq. cm.
	DC DD/DDES	Assume cone of earth 15 degrees.
	DF	 a) Cohesive Material – Soft to medium clay. Some silt and sand. Can be excavated by shovel alone and molded by medium finger pressure. Blow count 4 to 8.
		Granular Material – Loose to medium sand and silt. Easily excavated by shovel alone and moulded by medium finger pressure. Blow count 4 to 10, paddy fields.
		When the top layer of soil upto 1.5m each black cotton/Loose Silty Sandy soil and followed by normal dry cohesive ordinary soil.
		And where subsoil water table is met at 1.5m or below the ground level.
		 For all the above soils and where subsoil water table is met less than 0.75m or below the ground level.
		Fully submerged soil consisting top layer of black cotton soil/Loose silty sandy soils followed by ordinary fine grained soil strata.
		 Wet fissured/disintegrated rock, hard gravel, Kankar and limestone, Later it .
III "Spread Footing"	For use with all 132kV lattice tower types DB	Hard Rock/ordinary soil followed the hard rock.

Kohalpur Nepalgunj 132 kV TLP

DC		
DD/DDES		
DF		

11.14 Schedule A.14

INSEPTION TESTS AT MANUFACTURE'S PLANT

ITEM	DESCRIPTION	DATA
1.	Rolled Steel Angles and Bolts	
1.1	Tensile strength test and chemical analysis, zinc coating test	Steel Mill Certificates
	Full scale tower load test to destruction	IEC 652
2.	Insulators	
2.1	Temperature cycle test, mechanical failing load test	IEC 383 & IEC 575
2.2	Porosity test, continuity of zinc coating	BS 137
2.3	Electrical test on complete insulator strings	ANSI C-29.1
3.	Insulator Fittings	
3.1	Routine and sample mechanical tests	BS 3288
3.2	Galvanizing tests	BS 729
4.	Clamps and joints	
4.1	Mechanical and electrical type tests, galvanizing and mechanical routine tests	BS 3288
		BS 729 ISO
5.	Dampers	
5.1	Fatigue resistant tests	
5.2	Test of clamp slippage resistance	BS 729
5.3	Galvanizing tests	ISO
6.	Line Conductor and earth wire	
6.1	Mechanical test, galvanizing test and resistivity test, ultimate tensile stress of complete conductor	IEC 209 BS 2677

Kohalpur Nepalgunj 132 kV TLP

Kohalpur Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 12 FORMS AND PROCEDURES

Kohalpur Nepalgunj 132 kV TLP

TABLE OF CONTENTS

FORM OF COMPLETION CERTIFICATE
FORM OF OPERATIONAL ACCEPTANCE CERTIFICATE
CHANGE ORDER PROCEDURE AND FORMS
CHANGE ORDER PROCEDURE
ANNEXURE - 1: REQUEST FOR CHANGE PROPOSAL
ANNEXURE - 2: ESTIMATE FOR CHANGE PROPOSAL
ANNEXURE - 3: ACCEPTANCE OF ESTIMATE
ANNEXURE – 4: CHANGE PROPOSAL
ANNEXURE - 5: CHANGE ORDER - 1
ANNEXURE – 6: CHANGE ORDER - 2
ANNEXURE - 7: PENDING AGREEMENT CHANGE ORDER

Kohalpur Nepalgunj 132 kV TLP

FORM OF COMPLETION CERTIFICATE

	Date:
	IFB No:
To:	
Dear Ladies and/or Gentlemen,	
Pursuant to GCC Clause 24 (Completion of the Facilities entered into between yourselves and the Employe, we hereby notify you that the complete on the date specified below, and that, in accordance hereby takes over the said part(s) of the Facilities, together the risk of loss thereof on the date mentioned below.	r dated, relating to the following part(s) of the Facilities was (were ce with the terms of the Contract, the Employe
Description of the Facilities or part thereof:	
2. Date of Completion:	
However, you are required to complete the outstanding item practicable.	s listed in the attachment hereto as soon as
This letter does not relieve you of your obligation to complet with the Contract nor of your obligations during the Defect L	
Very truly yours,	
Title	
(Project Manager)	

Kohalpur Nepalgunj 132 kV TLP

FORM OF OPERATIONAL ACCEPTANCE CERTIFICATE

	Date:
	IFB No:
To:	
Dear Ladies and/or Gentlemen,	
Pursuant to GCC Sub-Clause 25.3 (Operational A entered into between yourselves and the El we he	Acceptance) of the General Conditions of the Contract mployer dated, relating to the creby notify you that the Functional Guarantees of the attained on the date specified below.
following part(s) of the Facilities were satisfactorily a	attained on the date specified below.
Description of the Facilities or part thereof:	
Date of Operational Acceptance:	
This letter does not relieve you of your obligation to with the Contract nor of your obligations during the	o complete the execution of the Facilities in accordance Defect Liability Period.
Very truly yours,	
Title	
(Project Manager)	

Kohalpur Nepalgunj 132 kV TLP

CHANGE ORDER PROCEDURE AND FORMS

Date:
IFB No:

CONTENTS

- 1. General
- 2. Change Order Log
- 3. References for Changes

ANNEXURES:

Annex 1	Request for Change Proposal
Annex 2	Estimates for Change Proposal
Annex 3	Acceptance of Estimate
Annex 4	Change Proposal
Annex 5	Change Order
Annex 6	Pending Agreement Change Order
Annex 7	Application for Change Proposal

Kohalpur Nepalguni 132 kV TLP

CHANGE ORDER PROCEDURE

1.1 General

This section provides samples of procedures and forms for implementing changes in the Facilities during the performance of the Contract in accordance with GCC Clause 39 (Change in the Facilities) of the General Conditions of the Contract.

1.2 Change Order Log

The Contractor shall keep an up-to-date Change Order Log to show the current status of Requests for Change and Changes authorized or pending. Entries of the Changes in the Change Order Log shall be made to ensure that the log is up-to-date. The Contractor shall attach a copy of the current Change Order Log in the monthly progress report to be submitted to the Employer.

1.3 References for Changes

- a. Request for Change as referred to in GCC Clause 39 shall be serially numbered CR-X-nnn.
- b. Estimate for Change Proposal as referred to in GCC Clause 39 shall be serially numbered CN-X-nnn.
- c. Acceptance of Estimate as referred to in GCC Clause 39 shall be serially numbered CA-X-nnn.
- d. Change Proposal as referred to in GCC Clause 39 shall be serially numbered CP-X-nnn.
- e. Change Order as referred to in GCC Clause 39 shall be serially numbered CO-X-nnn.

Note:

- (a) Requests for Change issued from the Employer's Home Office and the Site representatives of the Employer shall have the following respective references:
 - Home Office CR-H-nnn
 - Site CR-S-nnn
- (b) The above number "nnn" is the same for Request for Change, Estimate for Change Proposal, Acceptance of Estimate, Change Proposal and Change Order.

Kohalpur Nepalgunj 132 kV TLP

(Employer's Letterhead)

ANNEXURE - 1: REQUEST FOR CHANGE PROPOSAL

General

This section provides samples of procedures and forms for implementing changes in the Facilities during the performance of the Contract in accordance with GCC Clause 39 (Change in the Facilities) of the General Conditions of the Contract.

To:	Date:
Attentic	on:
Contrac	ct Name:
Contrac	ct Number:
Dear La	adies and/ or Gentlemen:
the Cha	ference to the captioned Contract, you are requested to prepare and submit a Change Proposal for ange noted below in accordance with the following instructions within days of the this letter
1.	Title of Change:
2.	Change Request No
3.	Originator of Change: Employer: Contractor (by Application for Change Proposal No:
4.	Brief Description of Change:
5.	Facilities and/or Item No. of equipment related to the requested Change:
6.	Reference drawings and/or technical documents for the request of Change:
	Drawing No./Document No. Description
7.	Detailed conditions or special requirements on the requested Change:

Kohalpur Nepalgunj 132 kV TLP

8.	General Terms and Conditions:
(a)	Please submit your estimate to us showing what effect the requested Change will have on the Contract Price.
(b)	Your estimate shall include your claim for the additional time, if any, for completion of the requested change.
(c)	If you have any opinion negative to the adoption of the requested Change in connection with the conformability to the other provisions of the Contract or the safety of the Plant or Facilities, please inform us of your opinion in your proposal of revised provisions.
(d)	Any increase or decrease in the work of the Contractor relating to the services of its personnel shall be calculated.
(e)	You shall not proceed with the execution of the work for the requested Change until we have accepted and confirmed the amount and nature in writing.
(Emplo	yer's Name)
(Signat	ure)
(Name	of signatory)
(Title o	f signatory)

Kohalpur Nepalgunj 132 kV TLP

ANNEXURE – 2: ESTIMATE FOR CHANGE PROPOSAL (NOT APPLICABLE)

(Contractor's Letterhead)

		(Sommation 3 Editerricad)	
To:			Date:
Attent	ion:		
Contra	act Nam	ne:	
Contra	act Num	nber:	
Dear I	_adies a	and/or Gentlemen:	
of pre Gener Chang	paring al Con	te to your Request for Change Proposal, we are pleas the below-referenced Change Proposal in accordance ditions of the Contract. We acknowledge that your sposal, in accordance with GCC Sub-Clause 39.2.2, is	ce with GCC Sub-Clause 39.2.1 of the agreement to the cost of preparing the
1.	Title	of Change:	
2.	Chan	nge Request No./Rev.:	
3.	Brief	Description of Change:	
4.	Sche	duled Impact of Change:	
5.	Cost	for Preparation of Change Proposal:	
(a)	Engir	neering	(Amount)
	(i)	Engineer hrs x rate/hr =	
	(ii)	Draftsperson hrs x rate/hr = Sub-total hrs	
Total I	Enginee	ering Cost	

Kanjan (A)

Kohalpur Nepalgunj 132 kV TLP

(b)	Other Cost	
Total	Cost (a) + (b)	
(Cont	tractor's Name)	
(Sign	ature)	
(Nam	e of signatory)	-

(Title of signatory)

Kohalpur Nepalgunj 132 kV TLP

ANNEXURE - 3: ACCEPTANCE OF ESTIMATE

(NOT APPLICABLE)

(Employer's Letterhead)

To:		Date:
Attentio	on:	
Contrac	ct Name:	
Contrac	ct Number:	
Dear La	adies and/ or Gentlemen:	
	ereby accept your Estimate for Change Proposal and agree that you should ation of the Change Proposal.	proceed with the
1.	Title of Change:	
2.	Change Request No./Rev.:	
3.	Estimate for Change Proposal No./Rev.:	-
4.	Acceptance of Estimate No./Rev.:	
5.	Brief Description of Change:	
6.	Other Terms and Conditions: In the event that we decide not to order the Chashall be entitled to compensation for the cost of preparation of Change Proposa Estimate for Change Proposal mentioned in para. 3 above in accordance with General Conditions.	I described in your
(Emplo	yer's Name)	
(Signat	ture)	
(Name	and Title of signatory)	

Karijan (A)

Single-Stage: Two-Envelope

Kohalpur Nepalgunj 132 kV TLP

ANNEXURE - 4: CHANGE PROPOSAL

(Contractor's Letterhead)

To:		Date:	
Attentio	on:		
Contra	ct Name:		
	ct Number:		
Dear L	adies and/or Gentlemen:		
	onse to your Request for Change Proposal Noour proposal as follows:	, v	ve hereby
1.	Title of Change:		
2.	Change Proposal No./Rev.:		
3.	Originator of Change: Employer:Contractor:		
4.	Brief Description of Change:		
5.	Reasons for Change:		
6.	Facilities and/ or Item No. of Equipment related to the requested 0	Change:	
7.	Reference drawings and/or technical documents for the requested	d Change:	
	Drawing/ Document No.	<u>Description</u>	
8.	Estimate of increase/ decrease to the Contract Price resulting from	m Change Proposal:1	
		(Amour	nt)
(a)	Direct material		
(b)	Major construction equipment		
(c)	Direct field labour (Total hrs)		
(d)	Subcontracts		_
1.00-1	shall be in the currencies of the Contract.		

Procurement of Plant

OCB No. PMD/EGMPAF/KNTLP-079/80-01

Single-Stage: Two-Envelope

Kohalpı	ır Nepalgunj 132 kV TLP		
(e)	Indirect material and labour		
(f)	Site supervision		
(g)	Head office technical staff salaries		
Proces	s engineer hrs @ rate/hr		
Project	engineer hrs @ rate/hr		
Equipment engineer hrs @ rate/hr			
Procurement hrs @ rate/hr			
Draftsperson hrs @ rate/hr			
Total hrs			
(h)	Extraordinary costs (computer, travel, etc.)		
(i)	Fee for general administration, % of Items		
(j)	Taxes and customs duties		
Total lump sum cost of Change Proposal			
(Sum of items (a) to (j))			
Cost to prepare Estimate for Change Proposal (Amount payable if Change is not accepted)			
9.	Additional time for Completion required due to Change Proposal		
10.	Effect on the Functional Guarantees		
11.	Effect on the other terms and conditions of the Contract		
12.	Validity of this Proposal: within [Number] days after receipt of this Proposal by the Employer		
13.	Other terms and conditions of this Change Proposal:		
(a)	You are requested to notify us of your acceptance, comments or rejection of this detailed Change Proposal within days from your receipt of this Proposal.		

Kohalpur Nepalgunj 132 kV TLP

(b)	The amount of any Contract Price.	y increase and/or decrease shall be taken into account in the adjustment of the
(c)	Contractor's cost for	or preparation of this Change Proposal:
(Contr	actor's Name)	
(Signa	iture)	
(Name	e of signatory)	
(Title	of signatory)	

Kohalpur Nepalgunj 132 kV TLP

ANNEXURE - 5: CHANGE ORDER - 1

(Employer's Letterhead)

To:		Date:
Attentic	on:	
Contrac	ct Name:	
	ct Number:	
Dear La	adies and/ or Gentlemen:	
adjust t	prove the Change Order for the work specified in the Change Proposal (Nothe Contract Price, Time for Completion and/or other conditions of the Contract in lause 39 of the General Conditions of the Contract.), and agree to n accordance with
1.	Title of Change:	
2.	Change Request No. /Rev.:	
3.	Change Order No. /Rev.:	
4.	Originator of Change: Employer: Contractor:	
5.	Authorized Price:	
	Ref. No.: Date:	
6.	Adjustment of Time for Completion	
	None Increase days Decrease days	
7.	Other effects, if any	

Kanjan (A)

Kohalpur Nepalgunj 132	2 kV TLP	
Authorized by:		Date:
	-	
(Employer)		
Accepted by:		Date:
	(Contractor)	

Kohalpur Nepalgunj 132 kV TLP

ANNEXURE - 6: CHANGE ORDER - 2

(Employer's Letterhead)

To:			Date:
Attentio	n:	_	
	et Name:		
Contrac	et Number: [
Dear La	adies and/or Gentlemen:		
	truct you to carry out the work in the Ch e General Conditions of the Contract.	nange Order detailed below in acco	ordance with GCC Clause
1.	Title of Change:		
2.	Employer's Request for Change Propodated:	sal No./Rev.:	
3.	Contractor's Change Proposal No./Rev	<i>.</i> ::	
4.	Brief Description of Change:		
5.	Facilities and/or Item No. of equipment	related to the requested Change:	
6.	Reference Drawings and/or technical d	locuments for the requested Chan	ge:
	Drawing/Document No.		<u>Description</u>
7.	Adjustment of Time for Completion:		
8.	Other change in the Contract terms:		
9. OCB No	Other terms and conditions: PMD/EGMPAF/KNTLP-079/80-01	Procurement of Plant	Single-Stage: Two-Envelope

Kohalpur Nepalgunj 132 kV TLP

(Employer's Name)

(Signature)

(Name of signatory)

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

ANNEXURE - 7: PENDING AGREEMENT CHANGE ORDER

(Contractor's Letterhead)

To:)ate:					
	on:						
	act Name:						
	act Number:						
Dear L	adies and/or Gentlemen:						
We he	reby propose that the below-mentioned work be treated as a Chang	e in the Facilities.					
1.	Title of Change:						
2.	Application for Change Proposal No./Rev.:dated:						
3.	Brief Description of Change:						
4.	Reasons for Change:						
5.	Order of Magnitude Estimation (in the currencies of the Contract):						
6.	Scheduled Impact of Change:						
7.	Effect on Functional Guarantees, if any:						
8.	Appendix:						
(Contra	actor's Name)						
(Signa	ture)						
(Name	e of signatory)						
(Title o	of signatory)						

Kohalpur Nepalgunj 132 kV TLP

VOLUME – II-A OF III CHAPTER - 13 PAYMENT OF WORKS

Kohalpur Nepalgunj 132 kV TLP

٦	ΓΔ	R	ΙF	OF	COL	NTE	NTS
		~		U I	\sim		

13	PAYMENT OF WORKS	2
13	PAINENI UT WURNO	_

Kohalpur Nepalguni 132 kV TLP

13 PAYMENT OF WORKS

This contract is a fixed price Turnkey Contract and the terms of payment is set out in Volume I of Bidding Document.

Invoices of materials, supplied, freight and insurance and erection work shall be submitted separately for the purpose of accounting.

This section provides general guidelines for interim progress payment of different equipment and works covered under this contract.

Interim Certificates for site work shall be restricted in scope to the following items:

- a. Preliminary work
- b. Steel towers and accessories
- c. Concrete foundations
- d. All support earthing systems
- e. All line and earth conductors and their associated fittings and insulator set
- f. Protection of tower footings

The Contractor shall submit to the Employer for approval a draft blank printed Form of Measurement Certificate at an early stage in the Contract.

All measurements for the purpose of payments shall be made jointly between representatives of the Contractor and the Employer.

The measurement of conductor and OPGW stringing is to be made along the centre line of the transmission lines without allowance for sag or scrap, and will be based on the horizontal distance involved. Measurement for supply part of conductor and OPGW is to be made as per actual length supplied.

The rates in the Price Schedule for the standard towers, foundations and for excavation in any type of ground, concrete etc., shall include all work irrespective of access conditions, slope of the ground, nature of the subsoil and the presence of water.

No extra payments will be made for the followings, which are not mentioned in the price schedule and required for execution of the work:

- Design, Engineering and project management services.
- Supply of Construction power and water.
- Deployment of man powers required for construction, erection testing and commissioning.
- Providing tools & tackles, consumables, construction machineries, vehicles, testing equipment, spare parts required for construction, erection, testing and commissioning.
- Excavation necessary solely for the installation of stub setting templates.
- Tower erection methods employed.
- Additional costs of access and transport of personnel, materials and erection equipment to the structure or along the route.
- Pumping out of water and flooding conditions.
- Shuttering, planking and close timbering of excavations.

Kohalpur Nepalgunj 132 kV TLP

- Lean Concrete made in tower foundation.
- Scaffolding necessary for stringing of conductors over existing overhead line, telecommunication lines, building, waterways, roads or railways.
- Delays arising from the necessity to switch out and earth existing overhead lines which have to be crossed over or under.
- And other items specifically mentioned in the document.

Costs of all of the above items are deemed to be included in the quoted price in price schedule.

Payment for various items as per the Price Schedule shall be as follows:

Table 13.1: Schedule for Interim Payment

S. No.	Description	Unit	Basis of Payment
1	Preliminary Work		
1.1	Check survey and Staking (Horizontal distance)	km	Based on km of line length
1.2	Detail Survey	km	Based on km of line length
1.3	Detail soil test	Location	Based on No. of Tower Locations
1.4	Measurement of Ground Electric resistance	Location	Based on No. of Tower Locations
1.5	Benching	Cu m	Based on Measured Value
2.	Galvanized steel tower		
2.1	Galvanized Steel Tower	No.	Based on no. of Tower
2.2	Galvanized Steel work for leg extension etc.	No.	Based on size and numbers supplied and erected
3	Tower accessories (Signs on tower)	Set / No.	Based on no. of Set / No.
4	Tower earthing (each set means one complete set for one tower footing)		
4.1	Pipe Type	Set	Based on no. of sets
4.2	Counterpoise type	No.	based on the set with Galvanized (earthing) steel wire

Procurement of Plant

Kohalpur Nepalgunj 132 kV TLP

S. No.	Description	Unit	Basis of Payment
			length used
5	Conductor and accessory		
5.1	Supply of ACSR conductor and OPGW	km	Based on length of supply
5.2	Stringing of ACSR conductor and OPGW	km	Based on the both double circuit conductor km horizontal (all six wires) and OPGW distance
6	Foundations	No.	Based on no. and type of foundations
7	Protection of Tower Footing		
7.1	Stone masonry work	Cu m	Based on measured value
7.2	Gabion Wall	Cu m	Based on measured value
7.3	Back filling and leveling	Cu m	Based on measured value
7.4	R.C.C works	Cu m	Based on measured value

VOLUME – II-A OF III CHAPTER - 14 TOWER DESIGN (QA, QD & DD TYPE)

TOWER DESIGN QA TYPE

					,	subject as note	ed / Release to incorpora d. Revised d	id For Fa ation of c trawings/	brication/Construction brication/Construction omments, modification designs required	, [
S DRAWING						TOB COM	rmation and		CAT I		
TANCES THE							Tama	koshi-f ransmiss	tricity Authority athmandu 220/400 kv sion Line Project		
O CIRCUMS						Recommende Approved	d By: 🚯	_ 0	late: 4/7/0/ late: 4/7/0/ late:	\$	
STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA), UNDER NO CIRCUMSTANCES THIS DRAWING HISSION FROM NEA IN WRITING				•	प्रतिक्षेत्र (हस्ताक्षर) 206 (तिथि)	. who will be seen a	शिकेशन / शिकेशन / शिकेशन / शिकेशन / गर्दे निवास विकास	निर्माण हिप्पी ह्या जा पूर्वादेश नार्थ प्र रिकार्ड हीं। रपोरेश स्राह्म	स्युत करें।	ন জি০ গা) uction	
SERVED NEA IN V	10	00.40		<u> </u>	F2412	First submission for Approval			PBKR RURAL CSR		
LY RE		02.18 ATE	0 REV.		First submission for Approval DESCRIPTION			DESIGNED	CHECKED	APPROVED	
ry Item and design Right is strictly reserved with In Anybody without prior Permission from Nea in writing	CLIENT: CONTRACTOR:				NEPAL ELECTRICITY AUTHORITY (An Undertaking of Government of Nepal) L&T CONSTRUCTION						
COPRIETO USED BY	PRÓJEC JOB No.	TAM KV E		BISE - KA			FRANSM	ISSIOI	N LINE PROJEC	T - 400/220K	V AND 132
THIS I	TOTAL N	O. OF PAG	ES	18	TITLE :						
		NAN	ΛE	DATE		14.0B A = 1			BB 114415		
	DSGN	₽Bk	(R	19.02.18	FOL	JNDATIO)N DES		DRAWING OF +0M BE	- rower t	YPE
i	СНКО	RJI		19.02.18	WET SOIL (DEPTH=3M) (132kV M/C BEAR) (WIND ZONE - 4)						
	APPD	cs	R	19.02.18							
	DOC. No.	0 1	7 1	2 3	- Т -	T L -	4 N	1 - 1	D C - 1	0 0 1B	CODE REV.
	RELEASED	FOR	PRE	LIMMARY	TENDE	R	_ INFORMAT	rion	APPROVAL	CONST	RUCTION

BB O I COT	TAMAKOSHI (6 KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU	Docum	ent No	Date
PROJECT	TRANSMISSION LINE (TKTL)	O17123-T-TL-4	19.02 18	
	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet
TITLE	QA +0M BE WET SOIL (DEPTH=3M) (132kV M/C BEAR) (WIND ZONE - 4)	PBKR	RJR	t OF 18

Design Summary For Different Load Cases:

S.No.	Extension	LC.	K-bar	L-bar	M-bar	N-bar	Chimney Inter	Chimney Interaction Ratio		FOS			SHEAR
							Compression	Tension	Uplift	Bearing	Stiding	Overturning	CHECK
1	+0m B.E	71	GOVERNS			L				1.49			SAFE
2	+0m B.E	72		GOVERNS	GOVERNS	GOVERNS			1.01			<u> </u>	SAFE
3	+0m B.E	97					0.269						SAFE
4	+0m B.E	86						0.31					SAFE SAFE
5	+0m B.E	77									3.981		SAFE
6	+0m B.E	75				<u> </u>						1,147	SAFE

Note: In addition to the governing load cases mentioned above, the foundation has been checked for reactions pertaining to all the load cases as mentioned in the reaction document

	L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC			
	TAMAKOSHI 10 KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)		Document No	Date
PROJECT			T-TL-4M-DC-1001B	19 02 18
	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHEÇKED	Sheet
TITLE	QA +0M BE_WET SOIL (DEPTH=3M) {132kV M/C BEAR}(WIND ZONE - 4)	PBKR	RJR	2 of 18

Input Parameters for Foundation Design :-

SLNo	Description	Variable	Unit	Value
1	1st Slope of Tower Leg	Ф	Deg	7,303
2	Depth of lower Layer	DI	m	1.350
3	Depth of Upper Layer (minimum)	Du	m	1.500
4	Depth of Upper Layer (maximum)	Du	m	3.000
5	Unit Weight of Soil in Lower layer	w, 1	Kg/m ³	940
6	Unit Weight of Soil in Upper layer	W _U	Kg/m ³	1440
7	Angle of Repose in Lower Layer	α	Deg	15
8	Angle of Repose in Upper Layer	lβ	Deg	25
9	Limit Bearing Capacity of Soil	Lbcs	Kg/m ²	13675
10	Factor of Safety applied on foundation loads	Fos		1.100
11	Total Depth of Foundation Below G.L (Including Pec Pad)	l D	m	3.000
12	Plinth Height in min	Dp	m	0 225
13	Unit Weight of Concrete in Lower Layer	Wel	Kg/m ³	1400
14	Unit Weight of Concrete in Upper Layer	Weu	Kg/m ³	2400
15	Characteristic Strength of Concrete	Fck	N/mm ²	20
16	Characteristic Strength of Steel	Fy	N/mm ²	500
17	Cover To Chimney Reinforcement	Ccc	mm	50
18	Cover To Footing Slab Reinforcement	Ccs	mm	50
19	Slope of Tower Leg	Ф	Deg	10.273

	Assumed Dimensions of Foundation Refer Figure- I							
ī	Footing Width at the Bottom of Slab -I	В	m	3 080				
2	Footing Width At Bottom of Slab - If	[B,]	m	3.080				
3	Footing Width At Top of Slab - II	B1	m	2,780				
4	Width of Footing At Bottom of Slab - Ill	B2	m	1.300				
5	Width of Chimney	Bc	ın l	0.490				
6	Depth of PCC Pad	Dpad	m [0.050				
7	Depth of Slab -I Fom top of PCC Pad	DI	m i	0.100				
8	Depth of Slab - II from top of Slab-I	D2	m i	0.150				
9	Depth of Slab -III from top of Slab-II	D3	m	0.200				
10	Height of Chimney Upto G.L. From Top of Slab - []]	Dc	m	2.500				

			OM B E
Ultima	te Foundation Loads in kg - Refer Doc. No. Q17123-T-TL-4M-DC-1000	Supp No. 2	Supp No. 1
	<u> </u>	LC-71	LC-72
Sr.No	Type of Load	CASE-1	CASE-2
1	Compression	69055	
2	Uplift	-	60189
3	Side Thrust (Transverse)	1267	1259
4	Side Thrust (Longitudinal)	1	9

(Over Load Factor 1.1 included)

		T CONSTRUCTION AISSION AND DISTRIBUTION IC			
			ı	Document No	Date
PROJECT	TAMAKOSHI 10 KATHMANDU 220/400 KV TRANSMISS KV BARHABISE - KATHMANDU TRAN		O17123-	T-TL-4M-DC-1001B	19 02 18
	FOUNDATION DESIGN & DRAWIN		DESIGNED	CHECKED	Sheet
TITLE	QA +0M BE, WET SOIL (I (132kV M/C BEAR) (WINI		PBKR	RJR	3 of 18
	(1) CHEC	K FOR UPLIFT (REFER FIGURE	- 2)		
Sr. No.	Des cription	E	pression		Value
(a) Horizo	ontal Offset of cone in Lower Layer	X = 1.35*Tan(15)			0.3617
(b) Horizo	ontal Offset of cone in Upper Layer	Y = 1.5 * Tan(25)			0.6995
` ' 1	volume of soil in Lower Layer in M ³	{(3.08)^2 *1.35+(2*3.08*1.35*(3617)+(PV 3	*1.35*(0.3617)^2)}	15.999
` 1	ne of Concrete in Lower Layer in M ³	((3.08^2+2.78^2+3.08*2.78)*0.	5/3)+(1.3^2*0	.2)+(0.49^2*1)	1,867
,1	olume Lower Layer in M ³	(15 999-1.867)			14.133
A1 = E	$B*B + 4B*H!*tan\phi! + \pi H!^2*tan^2\phi!$	$(3.08^2 + 4 \times 3.08 \times 1.35 \times \tan(1.00))$	5)+3.142x1.35	^2xtan(15)^2)	14 3540
	B*B+4B* (H1*tanφ1+ H2*tanφ2) + *tanφ1+ H2*tanφ2)²	$(3.08^2 + 4 \times 3.08 \times (0.3617 + 0.6))$	995)+3.142x(0	0.3617+0.6995)^2)	26.098
	rtanφ1≠ rt2*1anφ2) Volume of Soil in Upper Layer in M ³				20.002
(g) (As po	er CB(P manual No.10), A1+A2+ sqrt(A1A2))*H ₂ /3	(14.354 + 26.098 + sqrt (14.35	4 x 26.098)) x	: 1.5/3	29 903
(h) Volum	ne of Concrete in Upper Layer in M ³	(0.49^2*1.5)			0.360
(i) Net Vo	olume of Soil in Upper Layer in M ³	(29.903-0.36)			29.543
(j) Weigh	nt of Soil Resisting Uplift in Kg	(14.133*940) + (29.543 * 1440)			55827
(k) Weigh	t of Concrete in Kg	(1.867*1400)+(0.36035*2400)+(0.1*3,08^2*1400)+(0.49^2*0.225*240			4936
(l) Total F	Resistance against Uplift in Kg	(55826.94 + 4935.854)			60763
Facto	r of Safety against Uplift				
		60762 79 / 60189.15		ļ	1.01
		Since F.O.S is > 1.00 , Foundat	ion is Safe aga	inst Uplift	
	(2) CHE	CK FOR DOWNTHRUST	····		
	Bearing Pressure Due to Downthrust in Kg/m ²				
(A) 1					
	thrust acting perpendicular to footing (Y1)	(69055 * (COS(10.273)))			67948
(a) Down	•	(0.49^2 x 0.225x2400)+(0.49^2x			67948 3634
(a) Down	thrust acting perpendicular to footing (Y1) Load due to Concrete (Kg)	• • • • • • • • • • • • • • • • • • • •	r(3.08^2x0.1)+		
(a) Downt	•	(0.49^2 x 0.225x2400)+(0.49^2x 1440))+[(0.49^2x1)+(1.3^2x0.2) (3.08^2+2.78^2+3.08x2.78)x0.15	r(3.08^2x0.1)+		
(a) Downt (b) Over I (c) Total D	Load due to Concrete (Kg)	(0.49^2 x 0.225x2400)+(0.49^2x 1440))+[(0.49^2x1)+(1.3^2x0.2)- (3 08^2+2.78^2+3.08x2.78)x0.15 1440))	r(3.08^2x0.1)+		3634
(a) Downt (b) Over I (c) Total E (d) Bearing	Load due to Concrete (Kg) Downthrust acting normal to footing in Kg	(0.49°2 x 0.225x2400)+(0.49°2x 1440))+[(0.49°2x1)+(1.3°2x0.2)+ (3.08°2+2.78°2+3.08x2.78)x0.15 1440)) (67947,99+3633.72)	r(3.08^2x0.1)+		3634 71582
(a) Downt (b) Over I (c) Total D (d) Bearing (e) Depth (Load due to Concrete (Kg) Downthrust acting normal to footing in Kg g Pressure Due to Downthrust (Kg/m²) (P/A)	(0.49°2 x 0.225x2400)+(0.49°2x 1440))+{(0.49°2x1)+(1.3°2x0.2)+(3.08°2+2.78°2+3.08x2.78)x0.15 1440)) (67947.99+3633.72) (71581.71 / 3.08°2.)	r(3.08^2x0.1)+		3634 71582 7546
(a) Downt (b) Over I (c) Total D (d) Bearing (e) Depth o (f) Momer	Load due to Concrete (Kg) Downthrust acting normal to footing in Kg g Pressure Due to Downthrust (Kg/m²) (P/A) of Slab below chimney in M	(0.49°2 x 0.225x2400)*(0.49°2x 1440))*{(0.49°2x1)*(1.3°2x0.2)* (3.08°2+2.78°2+3.08x2.78)x0.15 1440)) (67947.99+3633.72) (71581.71 / 3.08°2) (0.1*0.15*0.2)	r(3.08^2x0.1)+		71582 7546 0.450 3919
(a) Downt (b) Over I (c) Total D (d) Bearing (e) Depth of (f) Momen g) Bearing	Coad due to Concrete (Kg) Downthrust acting normal to footing in Kg g Pressure Due to Downthrust (Kg/m²) (P/A) of Slab below chimney in M nt Due to Eccentricity (MX & MZ)	(0.49°2 x 0.225x2400)*(0.49°2x 1440))*[(0.49°2x1)*(1.3°2x0.2)* (3.08°2+2.78°2+3.08x2.78)x0.15 1440)) (67947,99+3633.72) (71581,71 / 3.08°2) (0.1+0.15+0.2) (67947.99 * Tan (7.303) *0.45)	r(3.08^2x0.1)+ /3}x(2400-144i		71582 7546 0.450 3919 805
(a) Downt (b) Over I (c) Total D (d) Bearing (e) Depth ((f) Momen g) Bearing (h) Bearing	Downthrust acting normal to footing in Kg g Pressure Due to Downthrust (Kg/m²) (P/A) of Slab below chimney in M nt Due to Eccentricity (MX & MZ) g Pressure Due to Eccentricity in Kg/m² (Pe/Z)	(0.49°2 x 0.225x2400)*(0.49°2x 1440))*[(0.49°2x1)*(1.3°2x0.2)* (3.08°2*2.78°2*3.08x2.78)x0.15 1440)) (67947,99*3633.72) (71581.71 / 3.08°2) (0.1*0.15*0.2) (67947 99 * Tan (7.303) *0.45) (3919 / (3.08°3 / 6.)	r(3.08^2x0.1)+ /3}x(2400-144i		71582 7546 0.450 3919 805 1610
(a) Downt (b) Over I (c) Total D (d) Bearing (e) Depth o (f) Momer g) Bearing (h) Bearing (i) Total B	Downthrust acting normal to footing in Kg g Pressure Due to Downthrust (Kg/m²) (P/A) of Slab below chimney in M nt Due to Eccentricity (MX & MZ) g Pressure Due to Eccentricity in Kg/m² (Pe/Z) g Pressure Due to Eccentricity in Kg/m² (Pe/Z)	(0.49°2 x 0.225x2400)*(0.49°2x 1440))*{(0.49°2x1)*(1.3°2x0.2)* (3.08°2+2.78°2+3.08x2.78)x0.15 1440)) (67947.99*3633.72) (71581.71 / 3.08°2) (0.1*0.15*0.2) (67947.99 * Tan (7.303) *0.45) (3919 / (3.08°3 / 6.) + (.3919 / (3.08°3 / 6.) + (.3919 / (3.08°3 / 6.))	r(3.08^2x0.1)+ /3}x(2400-144i		71582 7546 0.450 3919 805

2	$\overline{\mathcal{D}}$		CONSTRUCTION SSION AND DISTRIBUTION IC			·
					Pocument No	Date
PRO	JECT	TAMAKOSHI 16 KATHMANDU 220/400 KV TRANSMISSIC KV BARHABISE - KATHMANDU TRANS	ON LINE PROJECT - 400/220KV AND 13 MISSION LINE (TKTL)	017123-7	T-TL-4M-DC-1001B	19.02.18
TĽ	rle .	FOUNDATION DESIGN & DRAWING		DESIGNED	СИЕСКЕД	Sheet
		QA +0M BE WET SOIL (DE (132kV M/C BEAR) (WIND)		PBKR	RJR	4 of 18
Sr. No.		Description	<u> </u>	Expression		Value
_	(B) Be	earing Pressure Due to Transverse Side Thrust in 1	Kg/m²			-
(a)	Coeffic	cient of Passive Earth Pressure in upper layer (Kp_1)	(1+ Sin (25)) / (1- Sin (25))			2.464
	Coeffic	tient of Passive Earth Pressure in lower layer (Kp2)	(1+ Sin (15)) / (1- Sin (15))			1.698
(b)	Depth o	of Chimey above Slab-III	Dc ≈ 2.5			2 500
(c)	To find	the depth of effective earth pressure He(=H1+H2), eq	mating the passive pressure of soil to	o the side thrust		
			$1/2*Kp_1W_0H_1^2B_c*Kp_2W_0H_1H_1$		1,2B _c =S T	
].	Solving	this equation for H ₂ with			- 4	
İ			$A = 1/2*Kp_2W_LB_C$	=0.5*1.698*94(1*0 4 9	391,049
			$B = Kp_2W_uH_1B_c$	=1.698*1440*(1198.109
			$C = \frac{1}{2} K p_i W_u H_1^2 B_c - S.T$		1.5-0.5)	
			$H_2 = (-B + \text{sqrt}(B^2 - 4AC))/2A$	-0.5 2, 101 (44	10 (1.5-0.5) 2 0.49-120	
	Danth o	of Effective earth pressure Zone (He) in M	- 			0.302
		iffective Pressure Zone (He) is < (2.5-0.5). Therefore	(H2+H1) Soil Pressure will only be mobilised	=0.302+(1.5-0.5 d in 1.302 m Dept		1.302
ı			0.5*2.464*1440*(1.5-0.5)^2			869.2992
ı		ng Soil Force in upper layer Kg (R1) =	1.698*1440*(1.5-0.5)*(1.302			
		ng Soil Force in lower layer Kg (R2) =		·		362
- 1		g Soil Force in lower layer Kg (R3) =	0.5*1.698*940*(1.302-1)^2*(0.49	i	36
	Fotal Re	esisting Soil Force in Kg (R) =	869.2992+361.8288576+35.66 (869.2992*((1.5-0,5)/3+(1.302-		288576*((1.302.(1.5.	1266,793
(n)	C.G of I	Resultant force in m	0 5))*0.5)+35.6652694776*((1		200570 ((1.502-(1.54	0.482
(g)	Moment	t @ Base Due to Side Thrust (Kg-m)	1267.2*(3-0.05+0.225)-1266.7	9*(0.482+(2.5-0.5	i-1.30 2)+0.45)	1958
(h)	Bearing	Pressure due to SideThrust in Kg/m ²	(1958.49/(3.08^3/6))			402
(C) Bez	aring Pressure Due to Longitudinal Side Thrust in	Kg/m²			
(c) T	o find	the depth of effective earth pressure $He(=H_1+H_2)$, equ	ating the passive pressure of soil to	the side thrust		11021.7
			$1/2*Kp_1W_0H_1^2B_0+Kp_2W_0H_1H_2$	B _c +1/2*Kp ₂ W ₁ H ₂	2B _C =S T	
s	olving	this equation for H2 with				
			$A = 1/2 * K p_2 W_E B_\ell$	=0,5*1,698*940*	*0.49	391,049
			B= Kp ₂ W _o H ₁ B _c	=1 698*1440*(1.		1198,109
			$C = [1/2*Kp_1W_0H_1^2B_c-S.T]$,	0*(1.5-0.5)^2*(0.49-1.49	867.809
		· ·	- Law aski collect polesy a	□ → (1) →	or to 250 21 21 € 10.476 E44	かい しかいき
		L	$I_{s=1}(\cdot B \div \operatorname{sqrt}(B^2 - 4AC))/2A$		J	0.000

(7		ONSTRUCTION SION AND DISTRIBUTION IC			
				ı	Document No	Date
₽R€	OJECT	TAMAKOSHI 10 KATHMANDU 220/400 KV TRANSMISSION KV BARHABISË - KATHMANDU TRANSM		017123-	T-TL-4M-DC-1001B	19 02.18
·····	FOUNDATION DESIGN & DRAWING O			DESIGNED	CHECKED	Shees
	1166	QA +0M BE WET SOIL (DEP (132kV M/C BEAR) (WIND ZO		PBKR	RJR	5 of 18
(d)	Since I	Effective Pressure Zone (He) is < (2.5- 0.5) , Therefore 5	Soil Pressure will only be mobilised	in 0.041 m Dep	oth	
(e)	Resisti	ng Soit Force in upper layer $Kg^{-}(R1) =$	0 5*2 464*1440*(0.041)*2*0.	49		1.461292
	Resisti	ng Soil Force in lower tayer Kg (R2) =	0			0
	Resisti	ng Soil Force in lower layer Kg (R3) =	0			0
	Total F	Resisting Soil Force in Kg (R) =	1 4612919552+0+0			1.461
(f)	C.G of	Resultant force in m	0.041/3			0.014
(g)	Momer	nt @ Base Due to Side Thrust (Kg-m)	1.49*(3-0.05+0.225)-1.46*(0.01	366666666666	67+(2.5-0.5-0.041)+0.45	ı
(h)	Bearing	g Pressure due to SideThrust in Kg/m²	(1.19/(3.08^3/6))			0
		tal Bearing Pressure				
(i)		orust in Kg/m ²	Pmax = (9156 + 402 + 0)			9558
<i>2</i> :3			Pmin = (7546 - 1610 - 402 - 0)			5534
(1)	F	r of Safety against Bearing	(13675*1.25 / 9557.55)	n Promandon	5.0.6.1 B . 7	1.79
	(Link	bearing pressure is increased by 25% as per IS code		, roundation	is Sale in Bearing	L
6		(3) STRUCTURAL D	ESIGN OF FOUNDATION		<u></u>	
Sr. No.		Description	E	pression		Value
A)	l	ign Base Slab Reinforcement Fig-5 for base pressure distribution)				
(a)	Design	bearing pressure (Kg/m2)	= $\{(P/A+(0.5*Pe/Z)) + Max. of$	(Bearing pressu	re due to S.T (T).S T (L))}
(b)	Maxim	um , Pmax in Kg/m²	= (7546 + 804.775 +402)			8753
(c)	Minimu	um , Pmin in Kg/m²	= (7546 - 804.775 -402)			6339
(d)	Maxim	um pressure Pmax in N/mm2	8752.775*9.81/1000000			0.085865
(e)	Minime	um pressure Pmin in N/mm2	6339,225*9 81/1000000			0.062188
(f)	Total D	epth of At Section X-X in 'm'	(0 1 + 0.15 +0.2)			0.450
(g)	Effectiv	re Depth of Slab (dactual) at Section X-X in mm	(450 - (10 + 10 / 2 + 50))			385
(h)	Total D	epth of At Section Y-Y in M	(01+015)			0.250
(1)	Effectiv	re Depth of Slab (dactual) in mm	(250 - (10 + 10 / 2 + 50))			185
(j)	Distanc	e from the edge of the footing to Section X-X in 'm'	(3 08-0 49)/2		ĺ	1.295
ا ر	Distance	e from the edge of the footing to Section Y-Y in 'm'	(3.08-1.3)/2			0.890

(\mathcal{D}		NSTRUCTION ON AND DISTRIBUTION IC			
					Pocument No	Date
PRO	DJECT	TAMAKOSHI 10 KATHMANDU 220/400 KV TRANSMISSION I KV BARHABISE - KATHMANDU TRANSMI		017123/	T-TL-4M-DC-1001B	19.02.18
	TLE	FOUNDATION DESIGN & DRAWING OF		DESIGNED	CHECKED	Sheet
	T LIE	QA +0M BE WET SOIL (DEPT (132kV M/C BEAR) (WIND ZO)		PBKR	RJR	6 of 18
(1)	Pressu	re at a distanced=385mmfrom section X-X	(8753-6339)/3.08*(3.08-1.295+	0.385)+6339		8040
m)	Pressu	re at a distanced=185mmfrom section Y-Y	(8753-6339)/3 08*(3,08-0 89+0	185)+6339		8200
(n)	The pro	essure at section X-X (Pxx in Kg/m²)	(8753-6339)/3.08*(3.08-1.295)+	-6339		7738
(o)	The pr	essure at section Y-Y (Pyy in Kg/m²)	(8753-6339)/3.08*(3.08-0.89)+6	5339		8055
(p)	Bendin	ng Moment at face of chimney at Section X-X in kg-m	7738*3.08*(3.08-0.49)^2/8+(87	53-7738)*3.08*	1,295/2*2/3*1 295	21731
(g)	Bendin	ng Moment at face of chimney at Section X-X in N-mm	(21731,475*9.81*1000)			2 1319E-08
	No and	Diameter of Bars to be used in Base Slab	No of Bars required for base slab	Diamei	erofBarin mm	Area of Bars (Ast) in mm ²
		MKD "K"	18		10	1413.72
	Value o	of Xumax /d to be used in slab design	Fy = 500 (Xumax / d) = 0.46 &	è For Fy = 415	(Xumax/d) = 0.48	
	Effecti	ve Depth Required for slab (Dreqd) in mm	Sqrt (2.132E+08/ (0.36 * 20 * 6	.46*(1-(0.42*0.	46)) * 1.3 * 1000)	248
	Bread	th at section -XX in M = 1.3	Since (dreqd) < than (dactual)	, Slab depth is	0.К	
	Momer	nt of Resistance at Section - XX Mrx in N-mm	(Mrx =0.87 *500 * Ast *385 * [1-(Ast *500 / 20	• 1300*385]	
	Total R	Reinforcement Ast required in mm2	= 8.365 Ast^2 - 167475 Ast +	2.132E+08 = 0		
	where a	Ast = Reinforcement Reqd. for moment Mrx	Solving the above Quadratic equ	ation for Ast V	Ve Get Ast =	1366.17
	Minim	um steel area required , mm2/m	0 12/100 x 1300 x 450			702.0
	Bendin	ng Moment at Section - YY (Refer Fig -5)				1
	Bendin	g Moment at junction of slabs at Section Y-Y in kg-m	8055*3.08*(0.89)^2/2+(8753-80	55)*3.08*0.89/	2*2/3*0.89	10393
	Bendin	g Moment at junction of slabs at Section Y-Y in N-mm	(10393 353*9,81*1000)			1.0196E+08
	Effectiv	ve Depth Required for slab (Dregd) in mm	Sqrt (1.020E+08/ (0.36 * 20 * 0	.46*(1-(0.42*0)	46)) * 3.08 * 1000)	111
	Bread	th at section -YY in M = 3.08	Since (dreqd) < than (dactual)	, Slab depth is	0.K	i
	Momen	at of Resistance at Section - YY Mry in N-mm	(Mry =0.87 *500 * Ast *185 * [1	-(Ast *500 / 20	* 3080*185]	
	Total R	einforcement Ast required in mm2	= 3.531 Ast^2 - 80475 Ast + 1.	020E+08 = 0		
	where A	Ast = Reinforcement Reqd for moment Mry	Solving the above Quadratic equ	ation for Ast V	Ve Get Ast =	1346.51
		um steel area required , mm2	0.12/100 x 3080 x 250			924.00
		um of the above area of steel is provided as Slab	(Ast = Maximum of (1366.17	702 1346.51	974))	1366.17

175

Reinforcement

Total No of bars required for slab

Hence the speacing between rod is (mm)

(Ast = Maximum of (1366.17, 702, 1346.51, 924))

 $(-1366.177 (|Pi|/4*10^{\circ}2))$ (No of bars required = 17.395

(Let us Provide 18 Nos of 10mm diameter rod as slab reinforcement)

1366.17

0.К.

18

6		AT CONSTRUCTION MISSION AND DISTRIBUTION IC			
			De	enment No	Date
PROJE	CCT TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISS KV BARHABISE - KATHMANDU TRAI		O17123-T-	TL-4M-DC-1001B	19 02 18
TITL	FOUNDATION DESIGN & DRAWII E QA +0M BE WET SOIL (DESIGNED	CHECKED	Sheet
Sr.	(132kV M/C BEAR) (WTN	D ZONE - 4)	PBKR	RJR	7 of 18
No.	Description Description	<u> </u>	rpression		Value
-	heck for One Way Shear At Section - XX : - (Due to	Downthrust) (Refer Fig -3)			 _
` '	Section - XX max in kg/m2	8752.775			9767
	nin in kg/m2	8039 681			8753 8040
(b) To	otal Shear force at Section - XX/m run in N	(0.5*(8753+8040)*((3.08-0.49)/	2-0.385))*9 81		74954
	Tective Area of Cross Section per in run in mm ²	385*1000	, - 		385000
(d) No	ominal Shear Stress Tv in N/mm²/m	(74953,964 / 385000)			0.195
(e) To	otal Effective Area of Cross Section in mm ²	((1300*200)+0.5*(2780+3080)*	150+3080*(100-	50-5))	838100
(f) Pe	rcentage Slab reinforcement (p)	p = (100 * 1366,17)/838100			0.169
(g) Pe	rmissible Shear Stress To in N/mm ²	(Refer clause no 4.10 of Sp-16-	1980 Design Aid	ls for IS 456	
(h) Pe	rmissible Shear Stress To in N/mm²	{ 0.85 x { Sqrt (0.8 x Fck) }x{{	sqrt(1+5Ct)}-1}]	/(6xCt)	
(i) W	here Coefficient Ct is given by	$Ct = (0.8 \times 20 / (-6.89 \times 0.169))$)		13 741
(j) Pe	rmissible Shear Stress Tc in N/mm²	(((0.85*((0.8 * 20)^0.5*(((1+5 *	* 13.741)*0.5-1)))/(6*13.741)))	0.303
		(Since Tc > than Tv Shear Rei	nforcement is n	ot required)	
c) c	heck for One Way Shear At Section - YY: - (Due to)	Downthrust) (Refer Fig -3)			
(a) At	Section - YY				1
Pn	nax in kg/m2	8752.77 <i>5</i>			8753
Pn	nin in kg/m2	8200.323			8200
(b) To	tal Shear force at Section - YY/m run in N	(0.5*(8753+8200)*((3.08-1.3)/2-	0.185))*9.81		58624
(c) Eff	fective Area of Cross Section per m run in mm ²	185*1000			185000
d) No	minal Shear Stress Tv in N/mm ² /m	(58624.235 / 185000)			0.317
e) To	tal Effective Area of Cross Section in mm ²	((0.5*(2780+3080)*150+3080*(1	00-50-5))		578100
(f) Per	reentage Slab reinforcement (p)	p = (100 * 1366.17)/578100			0.245
g) Wi	ncre Coefficient Ct is given by	$Ct = (0.8 \times 20 / (6.89 \times 0.245))$)		9,478
(h) Per	missible Shear Stress Tc in N/mm ²	(((0.85*((0.8 * 20)^0.5*(((1+5* (9.478)^0 5-1))/(6	*9.478)))	0.356
\bot		(Since Tc > than Tv Shear Reir	forcement is no	ot required)	
D) CI	neck for Two Way Shear At Section - XX : - (Due to	Downthrust) (Refer Fig -3)			
a) Pre	ssure at Section XX in N/mm2	8752.775*9.81/1000000			0.0858647
b) She	ear At Section - XX in N	((0,086*[3080^2-(490+385)^2])			748807
o Em	ective Area of Cross Section in mm ²	(490 + 385)*4 *385			1347500
J) No	minal Shear Stress Tv in N/mm ²	(748807 / 1347500)			0 556
Alie	owable Shear Stress (Temax) in N/mm ²	(As per Clause 31.6,3 1 of IS 456	- 2000)		
	Temax ~ Ks * Te	Where $(Ks = 0.5 + B^{T}) \text{ Not } \simeq T$	c = 0.25 *SqrttF	ck)	
er Alk	owable Shear Stress in concrete (Temax) in N/mm ²	Min of (0.5 ± (0.49 / 0.49) .1 ;	*(0.25 * SQR	RT (20))	1 118
		(Since Temax > than Tv Shear !	Reinforcement i	is not required)	

C	9	L&T CONSTR POWER TRANSMISSION A			·	
_					Document No	Date
PRO	DJECT	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE F KV BARHABISE - KATHMANDU TRANSMISSION		017123-	T-TL-4M-DC-1001B	190218
	T. F.	FOUNDATION DESIGN & DRAWING OF TOW		DESIGNED	CHECKED	Sheet
	TLE	QA +0M BE WET SOIL (DEPTH=3M (132kV M/C BEAR) (WIND ZONE - 4)		PBKR	R/R	8 of 18
Sr. No.		Description	E	Expression		Value
E)	Check	for Two Way Shear At Section - YY : - (Due to Downthr	rust) (Refer Fig -3)			<u> </u>
(a)	Pressui	re at Section YY in N/mm2 875	52,775*9 81/1000000		<u>₩</u> .,, **	0.0858647
(b)	Shear A	At Section - YY in N	086*[3080^2-(1300+185)^2	D		625196
(c)	Effecti	ve Area of Cross Section in mm ²	1300 + 185)*4 *185			1098900
(d)	Nomin	al Shear Stress Tv in N/mm ² (6.	25196 / 1098900)			0.569
(e)	Allowa	ible Shear Stress in concrete (Tomax) in N/mm ²	in of (0.5 ← (0.49 / 0.49),	1) *(025 * S	ORT (20))	L.118
		i i	ince Temax > than Tv Shea			
F)	Design	of Slab for Uplift Reinforcement at Section - YY :-				<u> </u>
(a)	Bearing	Pressure due to Uplift in Kg/m ² (6	(60189.15) / (3.08 ^2 - 0.49^2))			6510
(b)	Bendin	g Moment/m width @ - YY (Mux) in N-mm	5509.539 * (3,08 - 1,3)^2 / 3	3 * 3.08) * 9.81	(* 1000)	7.790E+07
(c)	Momer	nt of Resistance at Section - YY Muy in N-mm (M	(Muy =0.87 *500*Astuy *185 * [1-(Astuy *500 / 20 * 3080*185)]			
(d)	Uplift f	Reinforcement @ - YY (Astuy in mm2)	3.531 Astuy^2 - 80475 Astu	y + 7.790E+07	= 0	
(e)		· -	lying the above Quadratic equ 2/100 x 3080 x 250	action for Astug	y We Get Astuy =	1012.99 924
	No and	Diameter of Bars to be used in Base Slab	Diameter of Bar in mm	lo of Bars requi	red for Uplift force @ Y	-
(f)		At Section - YY for Uplift Reinforcement	10	(1012.985 / (Pi	./4 *10^2)) =	13.000
		(Let us Provide 13 Nos of 10mm diameter				13.000
	Hence	the speacing between rod is (mm)	223	.		О.К.
G)	Design	of Slab for Uplift Reinforcement at Section - XX : -				
	section flange) using si Xu/d ₁ = where: level(ar A ₅₃ = A	be noted that reinforcement provided at section Y-Y for up at section X-X. This is because under uplift, compression of and sectionbehaves as a highly under reinforced section. For tress and strains of concrete and steel as per 15:456, the fol $ = (p_3/100)x(d_2/d_1)x(fs/0.36f_{ck}) + (p_4/100)x(0.87f_y/0.36f_{ck}) $ $ = p_3 = (100 A_{s3}/Bd_2) \text{ and } p_4 = (100 A_{s4}/Bd_4); \text{ (s= Design yield rived through interpolation from strain diagram)} $ rea of reinforcement at the top of bottom-most step, $A_{s4} = 0$ at of resistance of slab section at the face of the chimney:	eccurs at the face of the bas From the equilibrium of int Bowing equation (Moment eld stress of steel at d, from	e slab having m ernal and exten of resistance) ca MCE calculate	ore width (more area on the slab so nal forces on the slab so an be obtained ed for strain in steel at t	of compression ection and
		$87f_5 * (p_3/100) * (d_2/d_1) * (d_2/d_1 - 0.416 \text{ Nu/d}_1) + (0.87f_5) * ($	(p4/100) * (1-0.416Xu/d ₁)] *	Bd ₁ ²		

Substituting the value of Xu/dI in the above equation, we get the second order degree equation which can be resolve as follows:-

 $B = 0.416*((0.87*f_s)/(0.36*f_{ck})) * ((fs*(p_3/100)*(d_2/d_1)) + ((0.416*f_s*(p_3/100)*(d_2/d_1))*((0.87*f_s)/(0.36*f_{ck})) - 0.87*f_s \\ C = (M_{uv}/B*d_1*d_1) - (fs*(p_3/100)*(d_2/d_1)^2) + (0.416*(p_3/100)*(d_2/d_1)) * ((fs)/(0.36*f_{ck}))*((fs*(p_3/100)*(d_2/d_1)) \\ + (0.416*f_{ck})(0.36*f_{ck})(0.36*f_{ck})(0.36*f_{ck})(0.36*f_{ck})(0.36*f_{ck})(0.36*f_{ck})) + (0.416*f_{ck})(0.36*f$

 $A = 0.416* (0.87*f_s)^2/(0.36*f_{ck})$

			De	ocument No	Date
PROJEC	TAMAKOSHI 16 KATHMANDU 220/400 KV TRANSMI KV BARHABISE - KATHMANDU TR		O17123-T-	-TL-4M-DC-1001B	19 02 18
TITLE	FOUNDATION DESIGN & DRAW		DESIGNED	CHECKED	Sheet
	E QA +0M BE WET SOIL (132kV M/C BEAR) (WI		PBKR	RJ R	9 of 18
(a) Be	earing Pressure due to Uplift in Kg/m ²	(60189.15) 7 (3.08 12 - 0.4912	2);		6510
(b) Ber	ending Moment @ - XX (Mux) in N-mm	(6509.539 * (3.08 - 0.49)/2/4	8 * 3.08) * 9.81	* 1000)	1.649E+08
(c) Str	rain in reinforcement at d_2 from Bottom of slab-I (By h	mear interpolation from Strain Diagram)			1.879E-04
(d) Der	esign yield stress of reinforcement at d ₂ from Bottom of	f slab-I (fs in N/mm2) [Refer Fig 3 of SP-I	16]		37.587
A =	= $0.416*(0.87*f_{c})^2/(0.36*f_{ck})$	A=((0.416*(0.87*500)^2/(0.36*2	20))		10933
B =	= 0.416*((0.87*f _c)/(0.36*f _{ck})) *((fs*(p ₃ /100)*(d ₂ /d ₁))	B=0.416*((0.87*500)/(0.36*20)))*((37 587*0.001	8*(185/385))	
+ (($((0.416*fs*(p_3/100)*(d_3/d_1))*((0.87*f_y)/(0.36*f_{ck}))$	+((0.416*37.587*0.0018*(185/38	(0.87*500))/(0.36*20))	-433.373
- 0 .	0.87*f ₅	-0.87*500			
C=	= $(M_{uy}/B*d_1*d_1) - (fs*(p_3/100)*(d_2/d_1)^2)$	C=(164922343.868/3080*385*38	385)-(37 587*0.00)18*(185/385)^2)	
+ (($(0.416*(p_3/100)*(d_2/d_1))*((fs)/(0.36*f_{ck}))$	+(0 416*0.0018*(185/385))*((37	7.587)/(0.36*20))	ı	0.35379
((f	$(fs(p_3/100)*(d_2/d_1))$	*((37,587*0,0018*(185/385))			
The	erefore by resolving the above equation, we get.				
ps4	4/100	ps4/100 = (-b - SQRT(b^2-4ac))/2	/2*a		1
		ps4/100=433.373-SQRT(187812	2 313-4*10933*0.	.354))/(2*10933))	0 000834
		Therfore, ps4 -			0.08
The	crefore reinforcement Ast4 in mm2	Ast4=((0.083*3080*385)/100)			417.37
Mir	mimum steel area required , mm2	0.12/100 x 1300 x 450			702
(c) No :	and Diameter of Bars to be used in Base Slab	Diameter of Bar in mm No	o of Bars required	d for Uplift force @ >	ΚX
"L	At Section - XX for Uplift Reinforcement	10 ((702 / (Pi /4 *10^	`2)) =	9,000

G		CONSTRUCTION ISSION AND DISTRIBUTION IC		<u>-</u> -	***************************************
			D	ocument No	Date
PROJEC	CT TAMAKOSHI 16 KATHMANDU 220/400 KV TRANSMISSI KV BARHABISE - KATHMANDU TRAN		O17123-T	-TL-4M-DC-1001B	19 02.18
	FOUNDATION DESIGN & DRAWIN	G OF TOWER TYPE	DESIGNED	CHECKED	Sheet
TITLE	QA +0M BE_WET SOIL (DEPTH=3M) (132kV M/C BEAR) (WIND ZONE - 4)		PBKR	RJR	10 of 18
	(4)CHEC	CK FOR SLIDING (Refer Figure -	4)		·
r. No	Description	E:	epression	- N-	Value
(a) Co	pefficient of Passive Earth Pressure in Lower layer	(1+ Sin (15)) / (1- Sin (15))	·		1 698
(b) Co	pefficient of Passive Earth Pressure in Upper Tayer	(1+ Sin (25)) / (1- Sin (25))			2.464
(c) Fac	cial Area in upper layer of Chimney in m ²	A1 = (0.49 * (1.5 - 0.5))			0.490
(d) Fac	cial Area in lower layer of Chimney in m ²	A1 = (0.49 * (2.5 - 1.5))			0.490
(e) Fac	cial Area in Portion of Slab- III in m ²	A2 = (0.2 * 13)			0.260
(f) Fac	cial Area in Portion of Slab- H in m2	A3 = (0.15 * (3.08 ± 2.78 / 2))		0.440
(g) Fac	cial Area in Portion of Slab-1 in m²	A4 = (0.1 * 3.08)			0.308
(h) Ear	rth Pressures in Upper Layer in Kg /m²	(Plu = (2.464 * 1440 * (1.5-0	(.5))))		3548
(i) Ear	rth Pressures in Lower Layer 1 in Kg /m2	(P1I = (1.698 * 1440 * (1.5-0.	5)))		2445
(j) Ear	rth Pressures in Lower Layer 2 m Kg/m ²	(P2 = (2445.12 + (1.698 * 94	0 *(1.35 - 0.15	- 0 2))	4041
(k) Ear	rth Pressures in Lower Layer 3 in Kg/m ²	(P3 = (4041.24 + (1.698 * 94	0 * 0.2))		4360
(I) Ear	rth Pressures in Lower Layer 4 in Kg/m ²	(P4 = (4360.464 + (1.698 * 9	40 * 0.15))		46 0 0 ·
m) Ear	rth Pressures in Lower Layer 5 in Kg/m ²	(P5 = (4599.882 + (1.698 * 940 * 0.1))			4759
(n) Lat	teral Force in Lower Layer -1 in Kg	(F1 = 0.49 /2 *(3548.16))			869
(o) Lat	teral Force in Lower Layer -2 in Kg	(F2 = 0.49 /2 * (2445.12+40	041.24))		1589
p) Lat	teral Force in Lower Layer -3 in Kg	(F3 = 0.26 / 2 * (4041.24+43))	60.464))		1092
(q) Lat	teral Force in Lower Layer -4 in Kg	(F4 = 0.4395 / 2 * (4360.464	+4599.882))		1969
(r) Lat	teral Force in Lower Layer -5 in Kg	(F5 = 0.308 / 2 * (4599.882+	4759 494))		1441
		Total Lateral Force in Kg			6961
Fac	ctor of Safety Against Sliding :-				
		(6961.059 / 1267.2)			5.49
		Since F.O.S >1.00 foundation	is Safe against :	stiding	
	(5) (HECK FOR OVERTURNING			
. No	Description	Ex	pression		Value
a) Ma	iximum Transverse Side Thrust in Kg	(1267.2)		1267
b) Mac	ximum Longidutrnal Side Thrust in Kg		(9 05)		9
c) Res	sultant Side Thrust (R) in Kg		7.2^2 + 9.05^2		1267
d) Tota	tal Overturning Moment in Kg-m	(60189.15 * Cos (10.273) * (3 ± 0.225 - 0.05) *4		- ,	59760
e) Tota	tal Resisting Moment in Kg-m	'	1935.854 * (3.08 5 94 * 5 / 6 * 3.0		71645
	tor of Safety Against Overturning	1	73 / 59759.568)	,	
'' '''	or or onesty regulate Overtuning	Since F.O.S >1.00 foundation	•		1 20

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC						
	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU	Documen	t No	Date		
PROJECT	TRANSMISSION LINE (TKTL)	O17123-T-TL-4M-DC-1001B		19 02.18		
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE QA +0M BE WET SOIL (DEPTH=3M)	DESIGNED	CHECKED	Sheet		
	(132kV M/C BEAR) (WIND ZONE - 4)	PBKR	RJR	11 of 18		

3.0 DESIGN OF CHIMNEY (Chimney Design with Stub contribution)

3.1 Loading: Compression with biaxial bending

Puc=

(69055+0.49^2*(0.225+2.5)*2400)*9.81/1000

Puc=

692.83 KN

Mux=

 $(1267.2^*(2.5+0.225)-1266.793^*(2.5-0.5)/3)^*9.81/1000$

Mux= 25.59 KN-m

Muy≃

(1.49*(2.5+0.225)-1.461*(2.5-0.5)/3)*9.81/1000

Muy=

0.03 KN-m

Material Property:

fy=

500 N/mm²

fys=

250 N/mm²

fck=

20 N/mm²

Geometric Property:

D≖

490 mm

Clear cover Dia of reinf

50 mm

16 mm

and

and

20 mm 4 nos.

No. of reinf= ď =

4 nos. 60 mm

TRIAL-I Say Neutral Axis at a distance from MCE = Xu = 232.3904 mm

MCE: Most Compressed Edge of concrete

Location	Distance from MCE	Strain	Stress (f _{si}	ł	Force	Distance from NA		Moment
	mm		N/mm ²	mm²	KN	mm	mm	KN-m
MCE	0.0	0.00350	-	-	-	232.3904	245	
R1	60.0	0.00260	395.44	829.38	327.97	172.3904	185	60.67
R2	245.0	0.00019	37.98	402.12	-15.27	-12.6096	0	0.00
Stub	245.0	0.00019	37.98	2512.00	-95.41	-12.6096	0	0.00
R3	430.0	0.00298	415.15	829.38	-344.32	-197.61	-185	
		Total		4572.88	-127.04			124.37

Concrete force incompression, F =

0.36*fck*xu*d

Concrete force incompression,F =

819.87 KN

Total axial Capacity = Concrete force in compression + Summation of all internal forces induced by the rebar & the stub -127.04

Total axial capacity =

819.87

692.83 KN

≥

692.83 KN

Moment due to compression force in concrete = $F^*(C.G - 0.416Xu)$

= 121.6077 kN-m

Total Moment capacity = Moment due to compression force in concrete + Moment due to rebar & the stub

Total Moment capacity =

245.98 kN-m

Puz=

3363.57583 Pu/Puz= 0.205981

Interaction formula =

0.102

QΚ

\bigcirc	L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC				
	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU	Document !	чo	Date	
PROJECT	TRANSMISSION LINE (TKTL)	O17123-T-TL-4M-D	19 02 18		
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE OA +0M BE WET SOIL (DEPTH=3M)	DESIGNED	CHECKED	Sheet	
1,112	(132kV M/C BEAR) (WIND ZONE - 4)	PBKR	RJR	12 of 18	

3.2 Loading:Tension with biaxial bending

Put=

590 KN

Mux≐

25.37 KN-m

Muy=

0.23 KN-m

Material Property:

fy=

500 N/mm2

fys=

250 N/mm2

fck=

20 N/mm2

Geometric Property:

D≖

490 mm

clear cover

50 mm

Dia of reinf No. of reinf= 16 mm

and

20 mm 4 nos.

ď ≃

4 nos. 60 mm

TRIAL-I Say Neutral Axis at a distance from MCE = Xu = 155.1097 mm

Location	Distance from MCE	Strain	Stress (f _{si}	1	Force		Distance from CG	Moment
-	mm		N/mm2	mm2	KN	mm	mm	KN-m
MCE	0	0.00350	-	-		155.1097	245	-
R1	60	0.00215	372.08	829.38	308.60	95.10965	185	57.09
R2	245	0.00203	372.50	402.12	-149.79	-89.8903	0	0.00
Stub	245	0.00203	372.50	2512.00	-935.71	-89.8903	0	0.00
R3	430	0.00620	435.00	829.38	-360.78	-274.89	-185	66.74
		Total	T	4572.88	-1137.69			123.84

Concrete force incompression, F =

0.36*fck*xu*d

Concrete force incompression F =

547.23 KN

Total axial Capacity = Concrete force in compression + Summation of all internal forces induced by the rebar & the stub

Total axial capacity =

547.23 + -1137.69 = 590.46 KN

590.46 KN

Moment due to tension force in concrete = $F^*(C.G - 0.416Xu)$

= 98.761 kN-m

Total Moment capacity = Moment due to compression force in concrete + Moment due to rebar & the stub

Total Moment capacity =

222.60 kN-m

Pu/Puz= Interaction formula =

0.115

OK

Design of Lateral ties

(iii) 300mm

Minimum Diameter of Lateral Ties in mm =1/4 of largest dia. of Longitudinal bar

0.25*20

≥

5 6

mm mm

300 mm

Hence provide lateral ties of dia

As per Clause 26.5.3.2 of IS 456 - 2000. Pitch of lateral Ties shall be least of the following

(i) Least lateral dimension of compression member

0.49*1000

(ii) 16 times smallest diameter of longitudinal bars

16*16

490 mm 256 mm

So, provide the lateral ties at a distance of

300 250 mm c/c

	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV	Docume	nt No	Date
PROJECT	BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-T-TL-4	19.02.18	
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet
TITLE	QA +0M BE WET SOIL (DEPTH=3M) (132kV M/C BEAR) (WIND ZONE - +)	₽₿KR	RJR	13 of 18

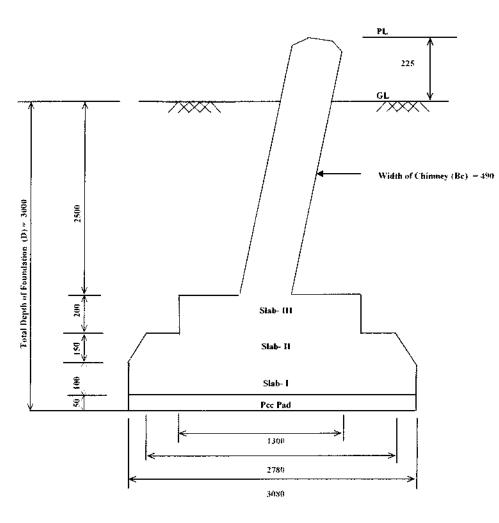
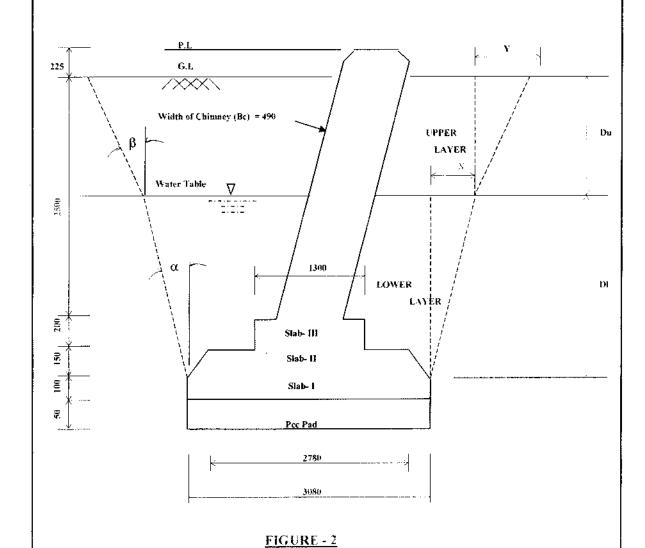


FIGURE - 1

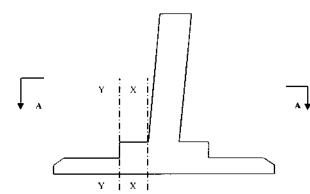
Sate :

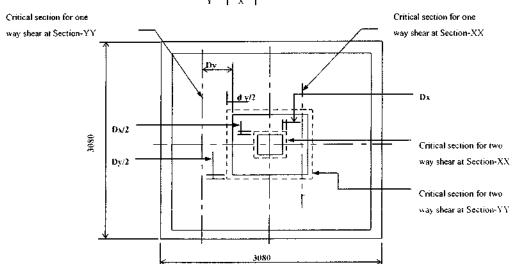
All Dimensions are in Millimeters



Note:

All dimensions are in Millimetres


L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC


	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV	Docume O17123-T-TI		Date
PROJECT	BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	1001		19.02.18
THE PERSON IN	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet
TITLE	QA +0M BE WET SOIL (DEPTH=3M) (132kV M/C BEAR) (WIND ZONE - 4)	PBKR	RJR	14 of 18

	TAMAKOSHI 10 KATHMANDU 220/400 KV	Documen	Date	
PROJECT	TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-T-TL-4M	-DC-1001B	19.02.18
TITL D	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet
TITLE	QA +0M BE_WET SOIL (DEPTH=3M) (132kV M/C BEAR) (WIND ZONE - 4)	PBKR	RJŘ	15 of 18

SECTION A-A

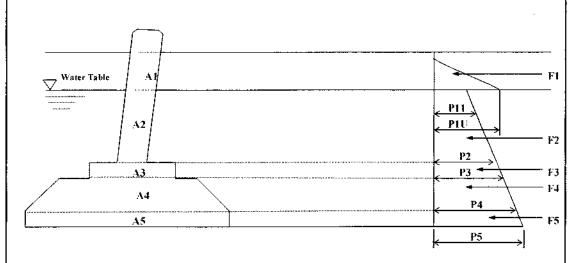
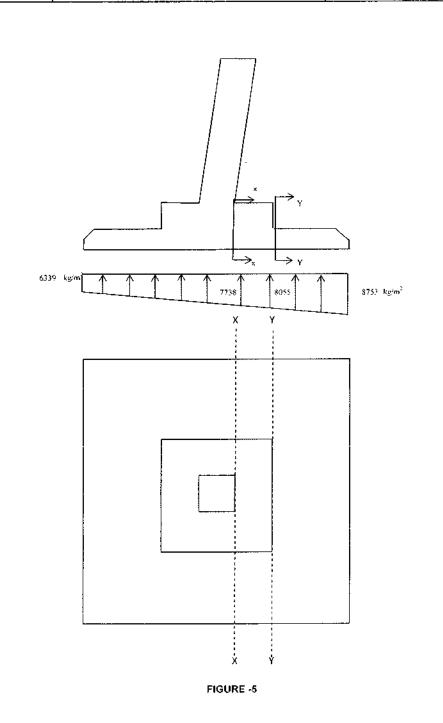

Note:

FIGURE - 3

All Dimensions are in Millimeters

	TAMAKOSHI to KATHMANDU 220/400 KV	Documen	Date	
PROJECT	TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-T-TL 1001E		19.02.18
areata et	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	СНЕСКЕВ	Sheet
TITLE	QA +0M BE WET SOIL (DEPTH=3M) (132kV M/C BEAR) (WIND ZONE - 4)	PBKR	RJR	16 of 18



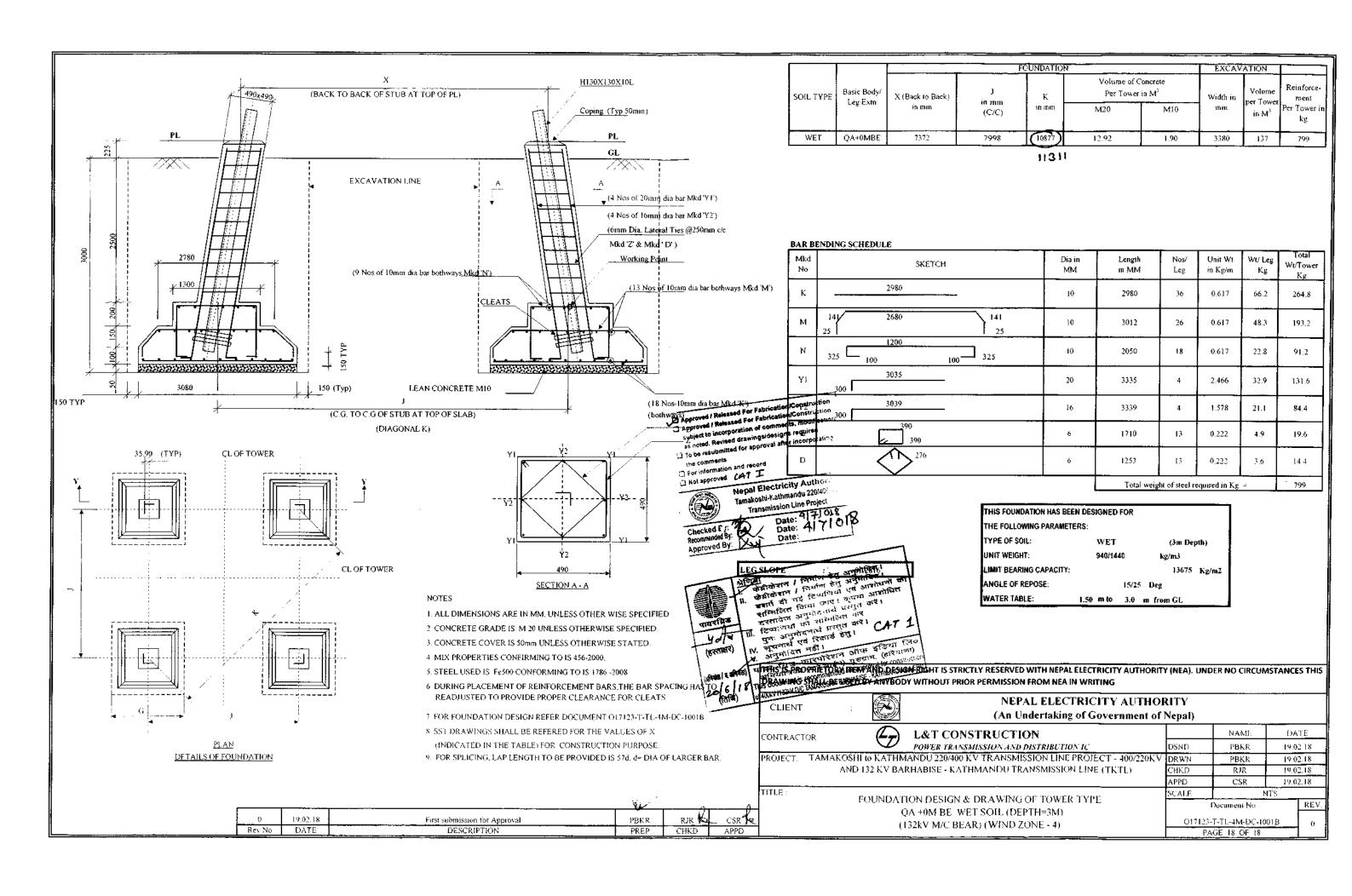

EARTH PRESSURE DISTRIBUTION

FIGURE - 4

	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV	Documen	Date	
PROJECT	BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-T-TL-4M	-DC-1001B	19.02.18
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE OA +0M BE WET SOIL (DEPTH=3M)	DESIGNED	CHECKED	Sheet
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(132kV M/C BEAR) (WIND ZONE - 4)	PBKR	RJR	17 of 18

L&T Construction

Power Transmission & Distribution

CLIENT:

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

ONSULTANT

POWER GRID CORPORATION OF INDIA LTD

PROJECT:

TAMAKOSHI - KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT -400/220 KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE

LOA No.: 073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4M-GA-0101A

BOM No.: BOM/LE17D124/132kV/QA/001A

CATE शन / निर्माण हेतु अनुगोदित। राज / निर्माण हेतु अनुगोदित। / निर्माण हेतु अनुमोदित गई टिप्पणियी एवं आशोध त किया जाए। कृपया आशोधित अनुमोदनार्थं प्रस्तुत करे। सन्गिलिय

र ग्रिङ कारपोरेशन औफ इंडिया लि० वर्षात्रिकी (पारे.लाईन) गुरुवान, (हरियाण) xcument is recommended for approval for construction

OOKV /132XV DIC TAMAKOSHI - BARHABISE - KATHMANOU III NEPA

दनार्थं प्रस्तुत करे। वं प्रिकार्ड हेतु।

NO OF SHEETS:

2

CATE

pproved / Released For Fabrication/Construction ved / Released For Fabrication/Construction subject to incorporation of or liments, modification as noted. Revised drawings/conigns required To be resubmitted for approval after incorporating

BILL OF MATERIAL

D For Informatic 2M . STUB EXTENDER FOR TOWER TYPE - "QA" (132kV, WZ-4) ONE CORNER ONLY

document is re

☐ Not approved

Nepal Electricity Authority Tamakoshi-kaihmandu 220/400 ky Transmission Line Project

Checked By: Approved By: Date: 17 7 17 120 19 Date: 11 Date:

WEIGHT OF STRUCTURE	
HT MEMBERS: BOM/LE17D124/QA2RC	50.181
MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ETC.	Ħ
WEIGHT OF BOLTS & NUTS, SPRING WASHERS: BOM/LE17D124/QA2RB	2.416
TOTAL WEIGHT OF STRUCTURE:	52.597 Kgs

THIS STUB EXTENDER SHALL COMPLETE WITH EXISTING STANDARD STUB OF QA TYPE TOWER FOR 3M DEPTH FOUNDATION

0	29.05.19	FIRST SUBMISSION FOR APPROVAL			WINK	BSR	CSR
REV.	DATE		DESCRIPTION				· APPD.
PREPARED BY		CHECKED BY	REVIEWED BY	APPROVI	ED BY	C	ATE
Al	_EX	KMK	BSR	CSF	₹	29.	.05.19

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

LARSEN & TOUBRO LIMITED, CONSTRUCTION., 979, Mount-Poonamaliee Road, Manapakkam, Tamilnadu-600089, PHONE: 044-22526000, FAX: 044-22526059

Date:

29-May-2019

Page: 1 of 1

BILL OF MATERIAL

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No: BOM/LE17D124/QA2RC

Order Ref:

REF/LE17D124

St.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In K G)	Req Qty	Për plecë Wt	Total Wt	Per Piece Ass.Wt
	BOM OF 2M S	TUB EXTENDER FOR TOW	/ER TYPE-"QA" (13	2kV WZ-4) ONE	CORNER		
1	N1MQAZE1H	L130X130X10H-E350A	2027.00	19.700	1.	39.932	39.932	
2	N1MQA2E2H	L120X120X8H-E350A	376.00	14.700	1	5.527	5.527	
3	N1MQA2E3H	8MM PLATE H-E350A	100.00 X 376.00	62.800	.2	2.361	4.722	
			•	Total We	igĥt:		50.181	

Associated Parts

~·····			
Part Code	Type of Association	Associated with	Total Weight

No Association Part

Raw Material Involved	Standard Material	Total Weight (In Kg)
BOM OF 2M STUB EXTENDER FOR TOWER TO WZ-4) ONE CORNER	YPE-"QA" (132kV	
8MM PLATE H-E350A	н⊤	4.722
L120X120X8H-E350A	нт	5,527
L130X130X10H~E350A	нт	39.932
	Total	50,181
	HT	50.181

LARSEN & TOUBRO LIMITED, CONSTRUCTION., 979, Mount-Poonamallee Road, Manapakkam, Tamilnadu-600089, PHONE: 044-22526000, FAX: 044-22526059

Date:

29-May-2019

2.416

Page: 1 of 1

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bòm No :

BOM/LE17D124/QA2R8

Order Ref:

REF/LE17D124

SI.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per pîece wt	Total Wt	Per Piece Ass.Wt
	BOLTS & NU	TS OF 2M STUB EXTENDE	R FOR TOWER TYPE-	"QA" (13	2kV V	VZ-4) ONE C	ORNER	· · · · · · · · · · · · · · · · · · ·
1	QA2RB1	M16x50MM LONG (IS:12427)		0.142	16	0.142	2.272	
.2	QA2RB2	M16x3.5MM SPRING WASHER IS3063		0.009	16	0.009	0.144	
				Total We	ight :		2.416	
Assoc	iated Parts							
Part C	ode	Type of Association	Associated with	; T	otal W	èight		
		No Assoc	iation Part					
Raw M	aterial Involve	d	700.0	Standard	! Mater	ial	Total '	Weight (In Kg)
BOLTS (132k	& NUTS OF : V WZ-4) ON	2M STUB EXTENDER FOR E CORNER	TOWER TYPE-"QA"				<u></u>	
	SMM SPRING	WASHER IS3063						0.144
M16x3	, , , , , , , , , , , , , , , , , , , ,							0.144

Total

^{*** --} Item Assembled with another item

CLIENT:

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

CONSULTANT:

POWER GRID CORPORATION OF INDIA LTD

PROJECT:

TAMAKOSHI - KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT -400/220 KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE

LOA No.:

073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4M-GA-0103

BOM No.:

BOM/LE17D124/132kV/QA/003

निर्माण हेतु अनुगोदित / निर्माण हेतु अनुनोदिल। गई टिप्पणियाँ एवं आगोधनाँ को किया जाए। कृपया आशोधिल अनुमोननार्थं प्रस्तत करें। भन्नमोननार्थ प्रस्तुत करे। को सम्मिलित वार वनार्थं प्रस्तुत करें।

NO OF SHEETS:

4

कारपोरेशन ऑफ इंडिया लि० (पारे.लाईन) गुरुधान, (हरियाणा) 05 n3 10 V /132KV DIC TAMAKOSHII - BARHASISE - KATIRNANDU IN NEPA

BILL OF MATERIAL +0M BODY EXTN. FOR TOWER TYPE - "QA" (132kV, WZ-4)

	as noted Revised dray	or of continents, much cation wings/designs required approval after incorporating	
WEIGHT OF STRUCTURE	Nepat Electricity Authority Tamakeshi-Kathmandu 220/400 kv Transmission Line Project		
HT MEMBERS: BOM/LE17D124/PQA0E	Checked By: Recommended By: Approved By:	Date: 1210312019 Date: Date:	
MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ETC. BOM/LE17D124/PQA0E = 594.872 BOM/LE17D124/PQA0W = 0.312	595.184		
WEIGHT OF BOLTS & NUTS.SPRING WASHERS: BOM/LE17D124/PQA0B	54.544		
TOTAL WEIGHT OF STRUCTURE:	1231.076 Kgs		

SUCCESSFULLY TESTED AT CPRI - BENGALURU ON 11th OF JANUARY 2019

				3m -	12/	1 2/	
28.01.19	SUBMISSION FOR APPROVAL AFTER SUCCESSFUL TESTING			PŪ	BSR	CSR	
DATE		DESCRIPTION		CHKD.	REVED.	APPD.	
RED BY	CHECKED BY	REVIEWED BY	APPROVI	D BY DATE		APPROVED BY DAT	ATE
EX	PU	BSR CS		₹ 28		.01.19	
	DATE RED BY	DATE RED BY CHECKED BY	DATE DESCRIPTION RED BY CHECKED BY REVIEWED BY	DATE DESCRIPTION RED BY CHECKED BY REVIEWED BY APPROVE	DATE DESCRIPTION CHKD. RED BY CHECKED BY REVIEWED BY APPROVED BY	DATE DESCRIPTION CHKD. REVED. RED BY CHECKED BY REVIEWED BY APPROVED BY D.	

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

LARSEN & TOUBRO LIMITED, CONSTRUCTION.,

979, Mount-Poonamallee Road, Manapakkam, Tamilnadu-600089, PHONE: 044-22526000, FAX: 044-22526059

Date: 28-Jan-2019

Page: 1 of 2

BILL OF MATERIAL

Order No: LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No: BOM/LE17D124/PQA0E

Order Ref:

SI.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Unit/Ass Weight	Total Weight
	BODY EXTN.	+OM FOR TOWER TYPE	-"QA" (132kV, WZ				·
1	N1MQA21SH	L130X130X10H-E350A	5000.00	19.700	2	98.500	197.000
2	N1MQA22H	L130X130X10H-E350A	5000,00	19.700	2	98.500	197,000
3	N1MQA23H	L120X120X8H-E350A	376.00	14.700	4	5.527	22.108
4	N1MQA24H	8MM PLATE H-E350A	100.00 X 376.00	62.800	8	2.361	18.888
5	N1MQA25L	L65X65X4-E250A	6131.00	4.000	2	24.524	49.048
6	N1MQA25R	L65X65X4-E250A	6131.00	4.000	2.	24.524	49.048
7	N1MQA26L	L60X60X4-E250A	6131.00	3.700	2	22,685	45.370
8	N1MQA26R	L60X60X4-E250A	6131.00	3.700	2	22.685	45,370
9	N1MQA27L	L45X45X4-E250A	1048.00	2,700	4	2.830	11.320
10	N1MQA27R	L45X45X4-E250A	1048.00	2.700	4	2.830	11.320
11	N1MQA28L	L45X45X4-E250A	1884.00	2.700	4	5.087	20.348
12	N1MQA28R	L45X45X4-E250A	1884.00	2.700	4	5.087	20,348
13	N1MQA29LH	L45X45X4H-E350A	2045.00	2.700	3	5.522	16.566
14	N1MQA29RH	L45X45X4H-E350A	2045.00	2.700	3	5.522	16.566
15	N1MQA29AH	L45X45X4H-E350A	2045.00	2.700	1	5.522	5.522
16	N1MQA29BH	L45X45X4H-E350A	2045.00	2.700	1	5.522	5.522
17	N1MQA30L	L50XS0X4-E250A	2360.00	3.000	3	7.080	21.240
18	N1MQA30R	L50X50X4-E250A	2360.00	3.000	.3	7.080	21.240
19	N1MQA30AL	L50X50X4-E250A	2360.00	3.000	1	7.080	7.080
20	N1MQA30AR	L50X50X4-E250A	2360.00	3.000	1	7.080	7.080
21	N1MQA31L	L45X30X4-E250A	1735.00	2.200	4	3.817	15 .268
22	N1MQA31R	L45X30X4-E250A	1735.00	2.200	4	3.817	15.268
23	N1MQA31A	5MM PLATE-E250A	105.00 X 174.00	39.250	8	0.717	5.736
24	N1MQA32	6MM PLATE-E250A	144.00 X 220.00	47.100	4	1.492	5.968
25	N1MQA33	L50X50X4-E250A	6035.00	3.000	4	18.105	72.420
26	N1MQA34H	L45X45X4H-E350A	1392.00	2.700	4	3.758	15.032
	N1MQA35	L45X45X4-E250A	2861.00	2.700	4	7.725	30.900
	N1MQA35X	L45X45X4-E250A	2861.00	2.700	4	7.725	30.900
	N1MQA36	L45X45X4-E250A	3877.00	2.700	8	10.468	83.744
	N1MQA37H	5MM PLATE H-E350A	110.00 X 130.00	39.250	8	0.561	4.488
	N1MQA38	5MM PLATE-E250A	110.00 X 130.00	39.250	8	0.561	4.488
	N1MQA39L	5MM PLATE-E250A	110.00 X 157.00	39.250	4	0.678	2.712
33	N1MQA39R	5MM PLATE-E250A	110.00 X 157.00	39.250	4	0.678	2.712

^{** --} Item Welded with another item

^{*** -} Item Assembled with another item

LARSEN & TOUBRO LIMITED, CONSTRUCTION., 979, Mount-Poonamailee Road, Manapakkam,

Tamilnadu-600089,PHONE:044-22526000,FAX:044-22526059

Date: 28-Jan-2019

Page: 2 of 2

BILL OF MATERIAL

Order No: LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No: BOM/LE17D124/PQA0E

Order Ref:

REF/LE17D124

SI.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Unit/Ass Weight	Total Weight
34	N1MQA40H	L50X50X4H-E350A	3444.00	3.000	4	10.332	41.328
35	N1MQA40XH	L50X50X4H-E350A	3444.00	3.000	4	10.332	41.328
36	N1MQA41	L45X45X4-E250A	738.00	2.700	4	1.993	7.972
37	N1MQA42	L45X45X4-E250A	738.00	2.700	4	1.993	7.972
				Total W	eight :	·	1176.220

Associated Parts

Part Code Type of Association Associated with Total Weight

No Association Part

Raw Material Involved	Standard Material	Total Weight (In Kg)
BODY EXTN. +OM FOR TOWER TYPE-"QA" (132kV, WZ	-4)	
5MM PLATE H-E350A	HT	4.488
5MM PLATE-E250A	MS	15.648
6MM PLATE-E250A	MS	5.968
8MM PLATE H-E350A	нт	18.888
L120X120X8H-E350A	Ή T	22.108
L130X130X10H-E350A	HT	394.000
L45X30X4-E250A	MS	30.536
L45X45X4-E250A	MS	224.824
L45X45X4H-E350A	HT	59.208
L50X50X4-E250A	MS	129.060
L50X50X4H-E350A	HT	82.656
L60X60X4-E250A	MS	90.740
L65X65X4-E250A	MS	98.096
To	otal –	1176.220
	HT	581.348
	MS	594.872

^{** -} Item Welded with another item

^{*** -} Item Assembled with another item

Page: 1 of 1

Date: 28-Jan-2019

BILL OF MATERIAL

Order No: LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No : BOM/LE17D124/PQA0B

Order Ref:

REF/LE17D124

SI.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Unit/Ass Weight	Total Weight
	BOLTS & NI	JTS OF +OM BODY EXTN	I. FOR TOWER TY		32kV, W	(Z-4)	
1	PQA0B1	M16X35MM LONG (IS:12427)		0.119	128	0.119	15.232
2	PQA0B2	M16X40MM LONG (IS:12427)		0.126	144	0.126	18.144
3	PQA0B3	M16X45MM LONG (IS:12427)		0.134	16	0.134	2.144
4	PQA0B4	M16X50MM LONG (IS:12427)		0.142	64	0.142	9.088
5	PQA0B5	M16x3.5MM SPRING WASHER IS3063		0.009	352	0.009	3.168
6	PQA0B6	M16x175LG SB (50 OD) 2N+1SP)	0.423	16.	0.423	6.768
				Total We	eight :	· · · · · ·	54.544

Associated Parts

Part Code	Type of Association	Associated with	Total Weight
	- 		

No Association Part

Raw Material Involved	Standard Material	Total Weight (In Kg)
BOLTS & NUTS OF +0M BODY EXTN. FOR TOWER TYPE-"QA" (132kV, WZ-4)		4 00 00 00
M16x175LG SB (50 OD) 2N+1SP		6,768
M16x3.5MM SPRING WASHER IS3063		
M16X35MM LONG (IS:12427)		3.168
·		15.232
M16X40MM LONG (IS:12427)		18.144
M16X45MM LONG (IS:12427)		2,144
M16X50MM LONG (IS:12427)		9.088
-		
•	otal	54.5 44

^{** --} Item Welded with another item

^{*** -} Item Assembled with another item

LARSEN & TOUBRO LIMITED, CONSTRUCTION., 979, Mount-Poonamallee Road, Manapakkam,

Tamilnadu-600089,PHONE:044-22526000,FAX:044-22526059

Date: 28-Jan-2019

Page: 1 of 1

BILL OF MATERIAL

Order No: LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No: BOM/LE17D124/PQAOW

Order Ref:

REF/LE170124

					Order	Ref: R	EF/LE17D124
SI.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Weight	Total Weight
	PACK WASH	IERS OF +OM BODY EXTN	. FOR TOWER TY	PE-"QA" (:	L32kV.	WZ-4)	
1	PQA0W1	M16x4MM ROUND PACK WASHER IS2016		0.014	12	0.014	0.168
.2	PQA0W2	M16x5MM ROUND PACK WASHER IS2016		0.018	8	0.018	0.144
				Total W	eight :		0.312
Assoc	lated Parts		•			······································	······································
Part Code		Type of Association	Associated with	Total \	Neight		
		No Association	Part	<u></u>	······································		
Raw M	aterial Involve	ed	S	tandard Ma	teria!	Tota	nl Weight (In Kg)
PACK TYPE-	WASHERS O "QA" (132k\	F +0M BODY EXTN. FOR T	TOWER	<u> </u>			weight (M kg)
M16x4	MM ROUND PA	ACK WASHER IS2016					0.168
M16x5	MM ROUND PA	ACK WASHER IS2016					0.168
			Total				0.144
			Total				0.312

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

CLIENT .

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

CONSULTANT:

POWER GRID CORPORATION OF INDIA LTD

PROJECT :

TAMAKOSHI - KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT -

400/220 KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE

LOA No. :

073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4M-GA-0104 (SHEET 1 To 9)

BOM No.: BOM/LE17D124/132kV/QA/004

पित्राक्षियान निर्माण हेतु अनुमोदित। (A [-[प्रमाण निर्माण हेतु अनुमोदित। प्रमाण चे गई टिप्पणियो एवं आशोधनो क। प्रमाण चे गई टिप्पणियो एवं आशोधनो क। प्रमाणियो अनुमोदनार्थं प्रस्ता आशोधिन प्रमाणियों यो प्रमाणित यस

> NO OF SHEETS:

Approved / Released For Fabrication/Construction
Approved / Released For Fabrication/Construction
subject to incorporation of comments, modification

18

প্রতিয়া প্রতিয়ালিকটা (বাই-লাক) বুলিকা বিশ্বিত।

(বিশ্বিত) বিশ্বেম চার্টিন বিশ্বিত।

(বিশ্বিত) বিশ্বেম চার্টিন বিশ্বেম চার্টিন বিশ্বিত।

(বিশ্বিত) বিশ্বেম চার্টিন বিশ্বেম চার্টিন বিশ্বিত।

(বিশ্বিত) বিশ্বিত) বিশ্বিত) বিশ্বিত।

(বিশ্বিত) বিশ্বিত) বিশ্বিত) বিশ্বিত।

(বিশ্বিত) বিশ্বিত) বিশ্বিত) বিশ্বিত।

(বিশ্বিত) বিশ্বিত) বিশ্বিত।

(বিশ্বিত) বিশ্বিত) বিশ্বিত) বিশ্বিত) বিশ্বিত) বিশ্বিত) বিশ্বিত) বিশ্বিত) বিশ্বিত) বিশ্

BILL OF MATERIAL BASIC BODY FOR TOWER TYPE - "QA" (132kV, WZ-4)

	as noted. Revised drawings/designs required To be resubmitted for approval after incorporating the comments For information and record Not approved
WEIGHT OF STRUCTURE	Ne pal Electricity Authority Tanakoshi-Kathmandu 220/400 ky Transmission Line Project
HT MEMBERS: BOM/LE17D124/PQABS	Recommended By: 3.286r448 By: Date: Date:
MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ETC. BOM/LE17D124/PQABS = 3283.916 BOM/LE17D124/PQABW = 6.174 BOM/LE17D124/PQAHR = 24.360	3314.450
WEIGHT OF BOLTS & NUTS, SPRING WASHERS: BOM/LE17D124/PQABB	430.694
TOTAL WEIGHT OF STRUCTURE:	7031.292 Kgs

SUCCESSFULLY TESTED AT CPRI - BENGALURU ON 11th OF JANUARY 2019

AL	EX	PU	BSR	CSR		28.01.19	
S S S S S S S S S S S S S S S S S S S		CHECKED BY	REVIEWED BY	APPROVE	ED BY	DATE	
PREPARED BY		CUEOUED DIA			CHKD.	REVED.	APPD
REV.		DATE		PU	BSR	UCSR	
0	28.01.19	SUBMISSION FOR AF	MISSION FOR APPROVAL AFTER SUCCESSFUL TESTING				CSR

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

Date:

15-Feb-2019

Page: 1 of 15

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No: BOM/LE17D124/PQABS

Order Ref:

31.IĄO	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
	BASIC BODY	FOR TOWER TYPE-"QA"	(132kV, WZ-4)					733.WL
1	N1MQA60SH	L130X130X10H-E350A	6650.00	19.700	2	131.005	262.010	
2	N1MQA61H	L130X130X10H-E350A	6650.00	19,700	2	131.005	262.010	
-3	N1MQA62SH	L120X120X10H-E350A	4729.00	18.200	2	86.068	172.136	
4	N1MQA63H	L120X120X10H-E350A	4729.00	18,200	2	86.068	172.136	
5	N1MQA64H	L1Z0X120X8H-E350A	376.00	14.700	4	5.527	22.108	
6	N1MQA65H	8MM PLATE H-E350A	100.00 X 376.00	62.800	8	2.361	18.888	
7	N1MQA66H	L110X110X8H-E350A	376.00	13.400	4	5.038	20.152	
8	N1MQA67H	8MM PLATE H-E350A	100.00 X 376.00	62.800	8	2.361	18.888	
9	N1MQA68	L55X55X4-E2S0A	5200.00	3.300	2	17.160	34:320	
10	N1MQA68X	L55X55X4-E250A	5200,00	3.300	2	17.160	34.320	
11	N1MQA69	L60X60X4-E250A	5200.00	3.700	.2	19.240	38.480	
12	N1MQA69X	L60X60X4-E250A	5200.00	3.700	2	19.240	38.480	
13	N1MQA70	L55X55X4-E250A	3204.00	3.300	.2	10.573	21.146	
14.	N1MQA70X	L5SX55X4-E250A	3204.00	3.300	2	10.573	21.146	
15	N1MQA71	L60X60X4-E250A	3204.00	3.700	2	11.855	23.710	
16	N1MQA71X	L60X60X4-E250A	3204.00	3.700	2	11.855	23.710	
17	N1MQA72	L50X50X4-E250A	286.00	3.000	8	0.858	6.864	
18	N1MQA73	5MM PLATE-E250A	50.00 X 286.00	39.25 0	16	0.561	8.976	
19	N1MQA74	L45X45X4-E250A	917.00	2.700	4	2.476	9.904	
20	N1MQA74X	L45X45X4-E250A	917.00	2.700	4	2.476	9.904	
21	N1MQA75	L45X45X4-E250A	1953.00	2.700	4.	5.273	21.092	
2 2	N1MQA75X	L4SX45X4-E250A	1953. 0 0	2.700	4	5.273	21.092	
23	N1MQA76	L45X45X4-E250A	1784.00	2.700	4.	4.817	19.268	
24	N1MQA76X	L45X45X4-E250A	1784.00	2.700	4	4.817	19.268	
25	NIMQA77	5MM PLATE-E250A	102.00 X 124.00	39.250	8	0.496	3.968	
26	N1MQA78	L45X45X4-E250A	2713.00	2.700	8	7.325	58.600	
27	N1MQA79	L50X50X4-E250A	2483.00	3.000	4	7 .4 49	29.796	
28	N1MQA79X	L50X50X4-E250A	2483.00	3.000	4	7.449	29.796	
29	N1MQA80	5MM PLATE-E250A	108.00 X 130.00	39.250	8	0.551	4.408	
30	N1MQA81	L45X45X4-E250A	1331.00	2,700	4	3.594	14.376	
31	N1MQA81X	L4SX45X4-E250A	1331.00	2.700	4	3.594	14.376	
32 1	N1MQA82	L60X60X4-E250A	5966.00	3.700	2	22.074	44.148	
33 1	N1MQA82X	L60X60X4-E250A	5966,00	3.700	2.	22.074	44.148	

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

LARSEN & TOUBRO LIMITED, CONSTRUCTION., 979, Mount-Poonamallee Road, Manapakkam,

Tamilnadu-600089,PHONE :044-22526000,FAX :044-22526059

Date:

15-Feb-2019

Page: 2 of 15

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No :

BOM/LE17D124/PQABS

Order Ref:

						Order Ref;	REF/L	E17D124
	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
34	N1MQA83	L45X30X4-E250A	953.00	2.200	2	2.097	4.194	
35	N1MQA83X	L45X30X4-E250A	953.00	2.200	2	2.097	4.194	
36	N1MQA84	5MM PLATE-E250A	100.00 X 136.00	39.250	4	0.534	2.136	
37	N1MQA85	L45X45X4-E250A	1616.00	2.700	2	4.363	8.726	
38	N1MQA85X	L45X45X4-E250A	1616.00	2.700	2	4,363	8.726	
39	N1MQA86	L45X45X4-E250A	2343.00	2.700	4	6.326	25.304	
40	N1MQA87	L45X30X4-E250A	1428.00	2.200	2	3.142	6.284	
41	N1MQA87X	L45X30X4-E250A	1428.00	2,200	2	3.142	6.284	
42	N1MQA88	L45X30X4-E250A	880.00	2.200	4	1.936	7.744	
43	N1MQA89H	155X55X5H-E350A	3154.00	4.100	2	12.931	25.862	
44	N1MQA90	L65X65X4-E250A	5936.00	4.000	2	23.744	47.488	
45	N1MQA90X	L65X65X4-E250A	5936.00	4.000	2	23.744	47.488	
46	N1MQA91	L45X30X4-E250A	954.00	2.200	-2	2.099	4-198	
47	N1MQA91X	L45X30X4-E250A	954.00	2.200	2	2.099	4.198	
48	N1MQA92	5MM PLATE-E250A	105.00 X 137.00	39.250	4	0.565	2.260	
49	N1MQA93	L45X45X4-E250A	1629,00	2.700	2	4.398	8.796	
50	N1MQA93X	L45X45X4-E250A	1629.00	2.700	2.	4.398	8. 796	
51	N1MQA94	L45X45X4-E250A	2294.00	2.700	4	6.194	24.776	
52	N1MQA95	L45X30X4-E250A	1399.00	2.200	2	3.078	6.156	
53	N1MQA95X	L45X30X4-E250A	1399.00	2.200	2	3.078	6.156	
54	N1MQA96	L45X30X4-E250A	907.00	2.200	4	1.995	7.980	
55	N1MQA97H	L60X60XSH-E350A	3333.00	4.500	2	14.999	29,998	
56	N1MQA98	L45X45X4-E250A	1182.00	2.700	4	3.191	12.764	
57	N1MQA99	L45X45X4-E250A	2323.00	2.700	4	6.272	25.088	
58	N1MQA100	L45X45X4-E250A	2357.00	2.700	4	6.364	25.456	
59	N1MQA101	L45X45X4-E250A	3201.00	2.700	4	8. 643	34.572	
60	NIMQA102	L45X45X4-E250A	3224.00	2.700	4	8.705	34.820	
61. I	N1MQA104	5MM PLATE-E250A	110.00 X 158.00	39.250	12	0.682	8.184	
52	N1MQA106	5MM PLATE-E250A	110.00 X 152.00	39.250	12	0.656	7.872	
63: I	N1 M QA107H	L45X45X4H-E350A	1902.00	2.700	4	5.135	20.540	
54 i	N1MQA108H	5MM PLATE H-E350A	110.00 X 152.00	39.250	4	0.656	2.624	
65 r	N1MQA109H	5MM PLATE H-E350A	110.00 X 158.00	39,250	4	0.682	2.728	
56 N	N1MQA110	L45X45X4-E250A	1267.00	2.700	.2	3.421	6.842	
5 7 ₽	VIMQA111	5MM PLATE-E250A	110.00 X 150.00	39.250	2	0,691		
					-	U,UJI	1.382	

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 3 of 15

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No: BOM/LE17D124/PQABS

Order Ref:

						Order Ker;	REF/L	E17D124
	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
68	N1MQA112	5MM PLATE-E250A	110.00 X 155.00	39.250	2	0.669	1.338	
69	N1MQA113	L45X45X4-E250A	1271.00	2,700	2	3,432	5.864	
70	N1MQA114	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382	
71	N1MQA115	5MM PLATE-E250A	110.00 X 150.00	39.250	2	0.648	1.296	
72	NIMQA116	L45X45X4-E250A	1335.00	2.700	2	3.605	7.210	
73	N1MQA117	5MM PLATE-E250A	110.00 X 150.00	39.250	2	0.648	1.296	
74	N1MQA118	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382	
75	N1MQA119	L45X45X4-E250A	1333.00	2.700	2	3.599	7.198	
76	N1MQA120	5MM PLATE-E250A	110.00 X 155.00	39.250	2	0.669	1.338	
77	N1MQA121	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382	
78	N1MQA122	5MM PLATE-E250A	95.00 X 188.00	39,250	2	0.701	1.402	
79	N1MQA140SH	L110X110X10H-E350A	4000.00	16.600	2	66.400	132,800	
80	N1MQA141H	L110X110X10H-E350A	4000.00	16.600	2	66.400	132.800	
81	N1MQA142SH	L100X100X8H-E350A	4100.00	12.100	2	49.610	99.220	
82	N1MQA143H	L100X100X8H-E350A	4100.00	12.100	2	49.610	99.220	
83	N1MQA144SH	L100X100X8H-E350A	4050.00	12.100	2	49.005	98.010	
84	N1MQA145H	L100X100X8H-E350A	4050,00	12.100	2	49.005	98.010	
85	N1MQA146H	L100X100X7H-E350A	346.00	10.700	4	3.702	14.808	
8 6	N1MQA147H	8MM PLATE H-E350A	85.00 X 346.00	62.800	8	1.847	14.776	
87	N1MQA148H	L90X90X6H-E350A	316.00	8.200	4	2.591	10.364	
88	N1MQA149H	6MM PLATE H-E350A	85.00 X 316.00	47.100	8	1.265	10.120	
89	N1MQA150	2MM PLATE-E250A	75.00 X 155.00	15.700	8	0.183	1.464	
90	N1MQA151H	L90X90X6H~E350A	306.00	8.200	4	2.509	10.036	
91	N1MQA152H	6MM PLATE H-E350A	80.00 X 306.00	47.100	8	1.153	9.224	
92	N1MQA153	L65X65X5-E250A	3319.00	4.900	2	16.263	32.526	
93	N1MQA153X	L65X65X5-E250A	3319,00	4.900	2	16.263	32.526	
94	N1MQA157	L45X30X4-E250A	671.00	2.200	2	1.476		
95 1	N1MQA158	LS0X50X4-E250A	3083.00	3.000	ż	9.249	2.952	
96 1	N1MQA159H	6MM PLATE H-E350A	133.00 X 135.00	47.100	4	0.846	18.498	
97 i	N1MQA160H	L65X65X5H-E350A	4008.00	4.900	2	19.639	3.384	
98 1	N1MQA160XH	L65X65X5H-E350A	4008.00	4.900	2		39.278	
9 1	VIMQA161	L45X30X4-E250A	1011.00	2.200	2	19.539	39.278	
00 1	N1MQA161X	L45X30X4-E250A	1011.00	2.200		2.224	4.448	
	N1MQA162	L45X30X4-E250A	1373.00		2	2.224	4.448	
				2.200	4	3.021	12.084	

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 4 of 15

BILL OF MATERIAL

Order No :

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Born No :

BOM/LE17D124/PQABS

Order Ref:

								•
	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
102	NIMQA163	L45X30X4-E250A	1068.00	2,200	2	2.350	4.700	<u>,</u>
103	N1MQA163X	L45X30X4-E250A	1068.00	2.200	2	2.350	4.700	
104	N1MQA164H	6MM PLATE H-E350A	135.00 X 330.00	47.100	4	2.098	8,392	
.105	N1MQA165	L50X50X4-E250A	2906.00	3.000	2	8.718	17.436	
106	N1MQA166	L45X30X4-E250A	642.00	2.200	2	1.412	2.824	
107	N1MQA167	L50X50X4-E250A	3083.00	3.000	2	9.249	18.498	
108	N1MQA167X	L50X50X4-E250A	3083.00	3.000	2	9.249	18,498	
109	N1MQA167A	5MM PLATE-E250A	112.00 X 176.00	39.250	2	0.774	1.548	
110	N1MQA168	L45X30X4-E250A	799.00	2.200	2	1.758	3.516	
111	N1MQA168X	L45X30X4-E250A	799.00	2.200	2	1.758	3.516	
112	N1MQA169	L45X30X4-E250A	615.00	2.200	4.	1.353	5.412	
113	N1MQA170	L45X30X4-E250A	818.00	2.200	2	1.800	3.600	
114	N1MQA170X	L45X30X4-E250A	818.00	2,200	2	1.800	3.600	
115	N1MQA171	L45X30X4-E250A	669.00	2.200	2	1.472	2 .94 4	
116	N1MQA172	L50X50X4-E250A	2824.00	3.000	2	8.472	16.944	
117	N1MQA173H	6MM PLATE H-E350A	125.00 X 137.00	47.100	4	0.807	3.228	
118	N1MQA174H	L65X65X5H-E350A	3818.00	4.900	2	18.708	37.416	
119	N1MQA174XH	L65X65X5H-E350A	3818.00	4.900	2	18.708	37.416	
120	N1MQA175	L45X30X4-E250A	963.00	2,200	2	2.119	4.238	
121	N1MQA175X	L45X30X4-E250A	963.00	2.200	2	2.119	4.238	
122	N1MQA176	L45X30X4-E250A	1373.00	2.200	4	3.021	12.084	
123	N1MQA177	L45X30X4-E250A	1022.00	2,200	2	2.248	4.496	
124	N1MQA177X	L45X30X4-E250A	1022.00	2,200	2	2.248	4.496	
125	N1MQA178H	6MM PLATE H-E350A	125.00 X 341.00	47.100	4	2.008		
126	N1MQA179	L50X50X4-E250A	2647.00	3.000	2	7.941	8.032 15.882	
127	N1MQA180	L45X30X4-E250A	639.00	2,200	2	1.406	•	
128	NIMQA181	L60X60X4-E250A	2844.00	3.700	2	10.523	2.812	
129	N1MQA181X	L60X60X4-E250A	2844.00	3.700	2		21.046	
130	N1MQA182	5MM PLATE-E250A	116.00 X 174.00	39.250	2	10.523	21.046	
131	NIMQA183	L45X30X4-E250A	669.00	2.200		0.792	1.584	
	N1MQA184	L50X50X4-E250A	2566.00		2	1.472	2.944	
	N1MQA185H	6MM PLATE H-E350A	125.00 X 142.00	3.000	2	7,698.	15.396	
	N1MQA186H	L60X60X5H-E350A		47.100	4	0.836	3.344	
	N1MQA186XH	L60X60X5H-E350A	3640.00	4.500	2	16.380	32,760	
	ami (SUTOOVI)	AUCCE"ncaupavo.	3640.00	4.500	2	16.380	32.760	

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 5 of 15

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No: BOM/LE17D124/PQABS

Order Ref:

<u></u>	o De + C I					Order Ref.	KEF/LE1/D124
	o Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt Per Piece Ass.Wt
138		L45X30X4-E250A	916.00	2.200	2	2.015	4.030
137		L45X30X4-E250A	916.00	2.200	2	2.015	4.030
138		L45X30X4-E250A	1373.00	2.200	4	3.021	12.084
139	N1MQA189	L45X30X4~E250A	979.00	2.200	2	2.154	4.308
140		L45X30X4-E250A	979.00	2.200	2	2.154	4.308
141	N1MQA190H	6MM PLATE H-E350A	165.00 X 336.00	47.100	4	2.611	10.444
142	N1MQA191	L50X50X4-E250A	2389.00	3.000	2	7.167	14.334
143	N1MQA192	L60X60X4-E250A	3345.00	3.700	2.	12.377	24.754
144	N1MQA192X	L60X60X4-E250A	3345.00	3.700	2	12.377	24.754
145	N1MQA193	L45X30X4-E250A	711.00	2.200	2	1.564	3.128
146	NIMQA194	6MM PLATE-E250A	135.00 X 143.00	47.100	4	0.909	3.636
147	N1MQA195	L65X65X5-E250A	3083.00	4.900	2	15.107	30.214
148	N1MQA196H	L55X55X5H-E350A	3962.00	4.100	2	16.244	
149	N1MQA196XH	L55X55X5H-E350A	3962.00	4.100	2	16.244	32:488
150	N1MQA197	L45X30X4-E250A	1001.00	2.200	2	2.202	32.488 4.404
151	NIMQA197X	L45X30X4-E250A	1001.00	2.200	2	2.202	4.404
152	N1MQA198	L45X30X4-E250A	1338.00	2.200	4	2.944	
153	N1MQA199	L45X30X4-E250A	1055.00	2,200	2	2.321	11.776
154	N1MQA199X	L45X30X4-E250A	1055.00	2.200	2.	2.321	4.642
155	N1MQA200	L50X50X4-E2S0A	3096.00	3.000	2	9.288	4.642
156	N1MQA201	L45X30X4-E250A	670.00	2.200	2	1.474	18.576
157	N1MQA202	L50X50X4-E250A	3113.00	3.000	2	9.339	2.948
158	N1MQA202X	L50X50X4-E250A	3113.00	3.000	2	9.339	18.678
159	N1MQA203	5MM PLATE-E250A	112.00 X 170.00	39.250 ′	2	9.33 9 0.747	18.678
60	N1MQA204	L45X30X4-E250A	705.00	2.200	2		1.494
61	N1MQA205	6MM PLATE-E250A	125.00 X 165.00	47.100	4	1.551	3.102
62	N1MQA206	L55X55X4-E250A	2824.00	3.300	2	0.971	3.884
63	N1MQA207H	L60X60X5H-E350A	3776.00	4.500	2	9.319	18.638
64	N1MQA207XH	L60X60X5H-E350A	3776.00	4.500	_	16.992	33.984
65	N1MQA208	L45X30X4-E250A	953.00	2.200	2	16.992	33.984
66	N1MQA208X	L45X30X4~E250A	953.00	2.200	2	2.097	4.194
67	N1MQA209	L45X30X4-E250A	1341.00		2	2.097	4.194
68	N1MQA210	L45X30X4-E250A	1010.00	2,200	4	2.950	11.800
6 <u>9</u>	N1MQA210X	L45X30X4-E250A	1010.00	2.200	2	2.222	4.444
			TATO:00	2.200	2	2.222	4.444

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 6 of 15

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No :

BOM/LE17D124/PQABS

Order Ref:

	· · · · · · · · · · · · · · · · · · ·					Oraci Rei	KETY/C	E170124
_	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
170	-	6MM PLATE H-E350A	125.00 X 313.00	47.100	4	1.843	7.372	
171	• •	L50X50X4-E250A	2831,00	3:000	2	8.493	16.986	
172		L45X30X4-E250A	670.00	2.200	2	1.474	2.948	
173	N1MQA214	L50X50X4-E250A	2876.00	3.000	2	8.628	17.256	
174	N1MQA214X	L50X50X4-E250A	2876.00	3.000	2.	8.628	17.256	
175		5MM PLATE-E250A	113.00 X 161.00	39.250	2	0.714	1.428	
176	N1MQA216	L45X30X4-E250A	704.00	2.200	2	1.549	3.098	
177	N1MQA217H	6MM PLATE H-E350A	125.00 X 319.00	47.100	4	1.878	7.512	
178	N1MQA218	L50X50X4-E250A	2566.00	3.000	2	7.698	15.396	
179	NIMQA219H	L55X55X5H-E350A	3598.00	4.100	2	14,752	29,504	
180	N1MQA219XH	L55X55X5H-E350A	3598.00	4.100	2	14.752	29.504	
181	N1MQA220	L45X30X4-E250A	907.00	2.200	2	1.995	3.990	
182	N1MQA220X	L45X30X4-E250A	907.00	2.200	2	1.995	3.990	
183	N1MQA221	L45X30X4-E250A	1344.00	2.200	4	2.957	11.828	
184	N1MQA222	L45X30X4-E250A	967.00	2.200	2	2.127	4.254	
185	N1MQA222X	L45X30X4-E250A	967.00	2.200	2	2.127	4.254	
186	N1MQA223H	6MM PLATE H-E350A	125.00 X 320.00	4 7.100	4	1.884	7.536	
187	N1MQAZ24H	L50X50X4H-E350A	2574.00	3.000	ž	7.722	15,444	
188	N1MQA225	L45X30X4-E250A	1110.00	2.200	2.	2.442	4.884	
189	N1MQA226	5MM PLÁTE-E250A	110.00 X 158.00	39.250	2	0.682	1.364	
190	N1MQA227	5MM PLATE-E250A	110.00 X 155.00	39.250	2	0.669	1.338	
191	N1MQA228	L45X30X4-E250A	1122.00	2.200	2	2.468	4.936	
1 92	N1MQA229	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382	
193	N1MQA230	5MM PLATE-E250A	110.00 X 147.00	39.250	2	0.635	1,270	
194	N1MQA231	E45X30X4-E250A	1018.00	2.200	.2	2.240	4:480	
195	N1MQA232	5MM PLATE-E250A	110.00 X 155.00	39.250	2	0.669	1.338	
196	N1MQA233	5MM PLATE-E250A	110.00 X 158.00	39.250	2	0.682	1.364	
197	NIMQA234	L45X30X4-E250A	1029.00	2.200	2	2,264	4.528	
198	N1MQA235	5MM PLATE-E250A	110.00 X 147.00	39.250	2	0.635		
199	N1MQA236	5MM PLATE-E250A	110.00 X 160.00	39,250	2	0.691	1.270	
200	N1MQA237	L45X30X4-E250A	1010.00	2.200	2	2.222	1.382	
201	N1MQA238	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	4.444	
202.	N1MQA239	5MM PLATE-E250A	110.00 X 155.00	39.250	2		1.382	
203	N1MQA240	L45X30X4-E250A	1016.00	2.200		0.669	1.338	
				2.200	2	2.235	4.470	

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 7 of 15

BILL OF MATERIAL

Order No :

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No: BOM/LE17D124/PQABS

Order Ref:

205	N1MQA241		(In MM)	(In KG)	Qty	Per piece wt	1022111	Per Piece Ass Wt
		5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382	
206 1	N1MQA242	5MM PLATE-E250A	110.00 X 150.00	39.250	2	0.648	1.296	
200 1	N1MQA243	L45X30X4-E250A	932.00	2.200	2	2.050	4.100	
207 N	N1MQA244	5MM PLATE-E250A	110.00 X 155.00	39.25 0	2	0.669	1.338	
208	N1MQA245	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382	
209 N	N1MQA246	L45X30X4-E250A	937.00	2.200	.2	2.061	4.122	
210 N	N1MQA247	5MM PLATE-E250A	110,00 X 150.00	39.250	2	0. 648	1.296	
211 N	N1MQA248	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382	
212 N	N1MQA249	L45X30X4-E250A	918.00	2.200	2	2.020	4.040	
213 N	N1MQA250	5MM PLATE-E250A	110.00 X 158.00	39.250	2	0.682	1.364	
214 N	N1MQA251	5MM PLATE-E250A	110.00 X 150.00	39.250	2	0.648	1.296	
215 N	N1MQA252	L45X30X4-E250A	921:00	2.200	2	2.026	4.052	
216 N	N1MQA253	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382	
217 N	N1MQA254	5MM PLATE-E250A	110.00 X 147.00	39.250	2	0.635	1.270	
218 N	N1MQA255	L45X30X4-E250A	841.00	2.200	2	1.850	3.700	
219 N	N1MQA256	5MM PLATE-E250A	110.00 X 150.00	39.250	2	0.648	1.296	
220 N	N1MQA257	SMM PLATE-E250A	110.00 X 158.00	39.250	2	0.682	1.364	
221 N	V1MQA258	L45X30X4-E250A	845.00	2.200	2	1.859	3.718	
222 N	V1MQA259	5MM PLATE-E250A	110.00 X 147.00	39.250	2	0.635	1.270	
223 N	N1MQA260	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382	
224 N	N1MQA261	5MM PLATE-E250A	85.00 X 168.00	39.250	2,	0.560	1.120	
225 N	NIMQA2805H	L75X75X6H-E350A	4050.00	6.800	2	27,540	55.080	
226 N	N1MQA281H	L75X75X6H~E350A	4050.00	6.800	2	27.540	55.080	
227 N	N1MQA282SH	L65X65X5H-E350A	5377.00	4.900	2	26.347	52.694	•
228 N	11MQA283H	L65X65X5H-E350A	5377:00	4.900	2	26.347	52.694	
229 N	11MQA284S	L55X55X5-E250A	3839.00	4.100	2	15.740	31.480	
230 N	11MQA285	L55X55X5-E250A	3839.00	4.100	2	15.740	31.480	
231 N	11MQA286H	L70X70X5H-E350A	356.00	5.300	4	1.887	7.548	
232 N	11MQA287H	6MM PLATE H-E350A	70.00 X 356.00	47,100	8	1.174	9.392	
233 N	I1MQA288	2MM PLATE-E250A	50.00 X 175.00	15.700	8	0.137	1.096	
234 ['] N	11MQA289	L45X30X4-E250A	678.00	2.200	2	1.492	2.984	
235 N	11MQA290	L50X50X4-E250A	2594.00	3.000	.2	7.782	15.564	
236 N	I1MQA290X.	L50X50X4-E250A	2594.00	3.000	2	7.782	15.564	
237 N	1MQA290A	L45X30X4-E250A	1142.00	2.200	4	2.512	10.048	

^{** -} Item Welded with another item

*** -- Item Assembled with another item

Date:

15-Feb-2019

Page: 8 of 15

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No.:

BOM/LE17D124/PQABS

Order Ref:

						Order Ker.	KEF/L	E1/0124
	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
238	N1MQA291H	L50X50X4H-E350A	2321.00	3.000	2	6.963	13.926	
239	-	6MM PLATE H-E350A	129.00 X 190.00	47.100	4	1.154	4.516	
240	N1MQAZ93H	L60X60X5H-E350A	3516.00	4,500	2	15.822	31.644	
241	N1MQA293XH	L60X60X5H-E350A	3516.00	4.500	2	15.822	31.644	
242	N1MQA294	L45X30X4-E250A	882.00	2.200	2	1.940	3.880	
243	N1MQA294X	L45X30X4~E250A	882.00	2.200	2	1.940	3.880	
244	N1MQA295	L45X30X4-E250A	1398.00	2.200	4	3.076	12.304	
245	N1MQA296	L45X30X4-E250A	951.00	2.200	2.	2.092	4.184	
246	N1MQA296X	L45X30X4-E250A	951.00	2.200	2	2.092	4.184	
247	N1MQA297H	6MM PLATE H-E350A	145.00 X 377.00	47.100	4	2.575	10.300	
248	N1MQA298H	L55X55X4H-E350A	2140.00	3,300	2.	7.062	14.124	
249	N1MQA299	L45X45X4-E250A	2366.00	2.700	2	6.388	12.776	
250	N1MQA299X	L45X45X4-E250A	2366.00	2.700	2	6.388	12.776	
251	N1MQA300H	L50X50X4H-E350A	2061.00	3.000	2	6.183	12.366	
252	N1MQA301H	6MM PLATE H-E350A	100.00 X 158.00	47.100	4	0.744	2.976	
253	N1MQA302H	L60X60X5H-E350A	3358.00	4.500	2	15.111	30,222	
254	N1MQA302XH	L60X60X5H-E350A	3358.00	4.500	2	15.111	30.222	
255	N1MQA303	L45X30X4-E250A	840.00	2.200	2	1.848	3.696	
256	N1MQA303X	L45X30X4-E250A	840. 0 0	2.200	2	1.848	3.696	
257	N1MQA304	L45X30X4-E250A	1398,00	2.200	4	3.076	12.304	
258	N1MQA305	L45X30X4-E250A	914.00	2,200	2	2.011	4.022	
259	N1MQA305X	L45X30X4-E250A	914.00	2.200	2	2.011	4.022	
260	N1MQA306H	6MM PLATE H-E350A	140.00 X 209.00	47.100	4	1.378	5.512	
261	N1MQA307H	L55X55X4H-E350A	1880.00	3.300	2	6.204	12,408	
262	N1MQA308	L45X45X4-E250A	2116.00	2.700	2	5.713	11.426	
263	N1MQA308X	L45X45X4-E250A	2116.00	2.700	2	5.713	11.426	
264	N1MQA309H	L45X45X4H-E350A	1805.00	2.700	2	4.874	9.748	
265	N1MQA310	L45X30X4-E250A	1974.00	2.200	2	4,343	8.686	
266	N1MQA310X	L45X30X4-E250A	1974.00	2:200	2	4.343	8,686	
267	N1MQA311	L45X30X4-E250A	1637.00	2.200	2	3,601	7.202	
268	N1MQA311X	L45X30X4-E250A	1637.00	2.200	2	3.601	7 ₋ 202	
269	N1MQA312	L45X30X4-E250A	676.00	2.200	2	1.487	2.974	
270	N1MQA312A	L45X30X4-E250A	261.00	2.200	Ż	0.574	1.148	
271	N1MQA313H	6MM PLATE H-E350A	109.00 X 176.00	47.100	2	0,904	1.808	

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 9 of 15

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No :

BOM/LE17D124/PQABS

Orđer Ref:

						Urder Ker:	REF/LE	17D124
	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
272	N1MQA314H	8MM PLATE H-E350A	164.00 X 381.00	62.800	1	3.924	3,924	
273	N1MQA315	L50X50X4-E250A	2628.00	3.000	.2	7.884	15.768	
274	N1MQA315X	LS0X50X4-E250A	2628.00	3.000	2	7.884	15.768	
275	N1M QA 316H	6MM PLATE H-E350A	133.00 X 375.00	47.100	4	2.349	9.396	
276	N1MQA317H	L55X55X4H-E350A	2321.00	3.300	2	7.659	15.318	
27.7	N1MQA318H	L60X60X5H-E350A	3468.00	4.500	2	15.606	31.212	
278	N1MQA318XH	L60X60X5H-E350A	3468.00	4.500	2	15.606	31.212	
279	N1MQA319	L45X30X4-E250A	872.00	2 .200	2	1.918	3.836	
280	N1MQA319X	L45X30X4-E250A	872.00	2.200	2	1.918	3.836	
281	N1MQA320	L45X30X4-E250A	1366.00	2 .200	4	3,005	12.020	
282	NIMQA321	L45X30X4-E250A	937.00	2.200	2	2.061	4.122	
283	N1MQA321X	L45X30X4-E250A	937.00	2.200	2	2.061	4.122	
284	N1MQA322H	6MM PLATE H-E350A	135.00 X 363.00	47.100	4	2.308	9.232	
285	N1MQA323H	L50X50X4H-E350A	2318.00	3.000	2	6.954	13.908	
286	N1MQA324	L50X50X4-E250A	2403.00	3.000	2	7.209	14.418	
287	N1MQA324X	L50X50X4-E250A	2403.00	3.000	2	7.209	14.418	
288	N1MQA325H	6MM PLATE H-E350A	100.00 X 340.00	47.100	4	1.601	6.404	
289	N1MQA326H	L50X50X4H-E350A	2061,00	3.000	2	6.183	12.366	
290	N1MQA327H	L60X60X5H-E350A	3316.00	4.500	2	14.922	29.844	
291	N1MQA327XH	L60X60X5H-E350A	3316.00	4.500	2	14.922	29.844	
292	N1MQA328	L45X30X4-E250A	831.0 0	2.200	2	1.828	3.656	
293	N1MQA328X	L45X30X4-E250A	831.00	2.200	2	1.828	3.656	
294	N1MQA329	L45X30X4-E250A	1371.00	2.200	.4	3.016	12.064	
295	N1MQA330	145X30X4-E250A	902.00	2.200	2	1.984	3.968	
296	N1MQA330X	L45X30X4-E250A	902.00	2.200	2	1.984	3.968	
297	N1MQA331H	6MM PLATE H-E350A	100.00 X 190.00	47,100	4	0.895	3.580	
298	N1MQA332H	L50X50X4H-E350A	2048.00	3.000	2	6.144	12.288	
299	N1MQA333	L45X45X4-E250A	2156.00	2.700	2	5.821	11.642	
300	NIMQA333X	L45X45X4-E250A	2156.00	2.700	2	5.821	11.642	
301	N1MQA333AH	5MM PLATE H-E350A	100.00 X 114.00	39.250	4	0.447		
302 I	N1MQA334H	L45X45X4H-E350A	1806.00	2.700	2	4.876	1.788	
303 1	N1MQA335	L45X30X4-E250A	1950.00	2.200	2	·	9.752	
04	N1MQA335X	L45X30X4-E250A	1950.00	2.200	2.	4.290	8.580	
05	N1MQA336	L45X30X4-E250A	1650.00	2.200		4.290	8.580	
		, _ _ •		2.200	2	3.630	7.260	

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page:

10 of 15

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No:

BOM/LE17D124/PQABS

Order Ref:

<u> </u>		····				urder ker:	REF/LE17D124
	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt Per Piece Ass.Wt
306		L45X30X4-E250A	1650.00	2.200	2	3.630	7.260
307	N1MQA337	L45X30X4-E250A	698.00	2.200	2	1.536	3.072
308	N1MQA337A	L45X30X4-E250A	282.00	2,200	2	0.620	1.240
309	N1MQA338	L45X30X4-E250A	811.00	2.200	-2	1.784	3,568
310	N1MQA339	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382
311	N1MQA340	5MM PLATE-E250A	110.00 X 150.00	39.250	2	0.648	1.296
312	N1MQA341	L45X30X4-E250A	811.00	2.200	2	1.784	3.568
313	N1MQA342	SMM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382
314	N1MQA343	5MM PLATE-E250A	110.00 X 150.00	39.250	2	0.648	1.296
315	N1MQA344	L45X30X4-E250A	752.00	2.200	2	1.654	3.308
316	N1MQA345	5MM PLATE-E250A	110.00 X 150.00	39.250	2	0.648	1.296
317	N1MQA346	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382
318	N1MQA347	L45X30X4-E250A	753.00	2.200	2	1.657	3.314
319	N1MQA348	5MM PLATE-E250A	110.00 X 150.00	39.250	2	0.648	1.296
320	N1MQA349	5MM PLATE-E250A	110.00 X 160.00	39.250	2	0.691	1.382
321	N1MQA370L	L70X70X5-E250A	3376.00	5.300	2	17.893	35.786
322	N1MQA370R	L70X70X5-E250A	3376.00	5.300	2	17.893	35.786
323	N1MQA371L	L50X50X4-E250A	3395.00	3.000	2	10.185	20,370
324	N1MQA371R	L50X50X4-E250A	3395.00	3.000	2	10.185	
325	N1MQA372L	6MM PLATE-E250A	206.00 X 289.00	47.100	2	2.804	20.370
326	N1MQA372R	6MM PLATE-E250A	206.00 X 289.00	47.100	2	2.804	5.608
327	N1MQA373L	L45X45X4-E250A	1637.00	2.700	2	4.420	5.608
328	N1MQA373R	L45X45X4-E250A	1637.00	2.700	2	4.420	8.840
329 I	N1MQA374L	L45X30X4-E250A	695.00	2.200	2	1.529	8.840
330 1	N1MQA374R	L45X30X4-E250A	695.00	2.200	2		3.058
31 (N1MQA375L	50X6 FLAT-E250A	182.00	2.400	2	1.529	3.058
332 1	V1MQA375A	6MM PLATE-E250A	147.00 X 242.00	47.100	2	0.437	0.874
33 r	N1MQA375R	50X6 FLAT-E250A	182.00	2.400		1.676	3.352
34 N	N1MQA376H	L50X50X4H-E3S0A	4430.00	3.000	2	0.437	0.874
35 1	√1MQA376XH	L50XS0X4H-E350A	4430.00	3.000	1	13.290	13.290
36 1	IIMQA377	L50X50X4-E250A	2223.00		1	13.290	13,290
37 N	11MQA377X	L50X50X4-E250A	2223.00	3.000	2	6.669	13.338
38 N	11MQA378H	5MM PLATE H-E350A	97.00 X 124.00	3.000	2:	6.669	13.338
	11MQA379	5MM PLATE-E250A		39.250	4	0.472	1,888
	-	ELVVA	120.00 X 184.00	39.250	2	0.867	1.734

^{** --} Item Weided with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 11 of 15

BILL OF MATERIAL

Order No :

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No : BOM/LE17D124/PQABS

Order Ref:

						Order Ref:	REF/Ļ	E17D124
SI.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wi	Per Piece Ass. Wt
340		6MM PLATE H-E350A	100.00 X 127.00	47.100	4	0.598	2.392	<u></u>
341		L45X45X4H-E350A	1547.00	2.700	2	4.177	8.354	
342	N1MQA381AH	L45X45X4H-E350A	1547.00	2.700	2	4.177	8,354	
343	N1MQA382H	L45X45X4H-E350A	1766.00	2.700	2	4.768	9.536	
344	N1MQA383H	L75X75X5H-E350A	407.00	5.700	2	2.320	4.640	
345	N1MQA384H	L110X110X10H-E350A	148.00	16.600	4	2.457	9.828	
346	N1MQA385H	L45X45X4H-E350A	1722.00	2.700	2	4.649	9.298	
347	N1MQA386	L45X30X4-E250A	460.00	2.200	2	1.012	2.024	
348	N1MQA400L	L70X70X5-E250A	342,1.00	5.300	2	18.131	36.262	
349	N1MQA400R	L70X70X5-E250A	3421.00	5.300	2	18.131	36.262	
350	N1MQA401L	L50X50X4-E250A	3399.00	3.000	ż	10.197	20.394	
351	N1MQA401R	L50X50X4-E250A	3399.00	3.000	2	10.197	20.394	
352	N1MQA402L	6MM PLATE-E250A	203.00 X 282.00	47 .10 0	2	2.696	5.392	
353	N1MQA402R	6MM PLATE-E250A	203.00 X 282.00	47.100	2	2.696	5.392	
354	N1MQA403L	L45X45X4-E250A	1641.00	2.700	2.	4.431	8.862	
355	N1MQA403R	L45X45X4-E250A	1641.00	2.700	2	4,431	8.862	
356	N1MQA404L	L45X30X4-E250A	694.00	2.200	2	1.527	3.054	
357	N1MQA404R	L45X30X4-E250A	694.00	2.200	2	1.527	3.054	
358	N1MQA405L	50X6 FLAT-E250A	180.00	2,400	2	0.432	0.864	
359	N1MQA405R	50X6 FLAT-E250A	180.00	2.400	2	0.432	0.864	
360	N1MQA406	6MM PLATE-E250A	146.00 X 245.00	47.100	2	1.685	3.370	
361	N1MQA407H	L50X50X4H-E350A	3912.00	3.000	1	11.736	11.736	
362	N1MQA407XH	L50X50X4H-E350A	3912.00	3.000	1	11.736	11.736	
363	N1MQA408H	5MM PLATE H-E350A	133.00 X 134.00	39.250	4	0.700	2.800	
364	N1MQA409H	6MM PLATE H-E350A	104.00 X 163.00	47.100	4.	0.798	3.192	
365	N1MQA410H	L45X45X4H-E350A	2634.00	2.700	2	7.112	14.224	
366	N1MQA410XH	L45X45X4H-E350A	2634.00	2.700	2	7.112	14.224	
367	N1MQA411H	L45X45X4H-E350A	1631.00	2.700	,2	4.404	8.808	
368	N1MQA412H	L75X75X5H-E350A	377.00	5.700	2	2.149	4.298	
369	N1MQA413H	L110X110X10H-E350A	148.00	16.600	4	2.457	9.828	
370	N1MQA414H	L45X45X4H-E350A	1589.00	2.700	2	4.290	8.580	
371	N1MQA415	L45X30X4-E250A	432,00	2.200	2	0.950	1.900	
372	N1MQA430L	L70X70X5-E250A	3421.00	5.300	2	18,131	35.262	
373	N1MQA430R	L70X70X5-E250A	3421.00	5.300	2	18.131	36.262	
							~ ~ . ~ . ~ .	

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 12 of 15

BILL OF MATERIAL

Order No :

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No :

BOM/LE17D124/PQABS

Order Ref:

REF/LE17D124.

	·						N_1/241/0124.
	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt Per Piece Ass.Wt
374	•	L50X50X4-E250A	3411.00	3.000	2	10.233	20.456
375		L50X50X4-E250A	3411.00	3.000	2	10.233	20.466
37 6	N1MQA432L	6MM PLATE-E250A	207.00 X 279.00	47.100	2	2.720	5.440
377	N1MQA432R	6MM PLATE-E250A	207.00 X 279.00	47.100	2	2.720	5.440
378	N1MQA433L	L45X45X4-E250A	1645.00	2,700	2.	4.442	8.884
379	N1MQA433R	L45X45X4-E250A	1645 .0 0	2.700	2	4.442	8.884
380	N1MQA434L	L45X30X4-E250A	694.00	2.200	2	1.527	3,054
381	N1MQA434R	L45X30X4-E250A	694.00	2.200	2	1.527	3.054
382	N1MQA435L	50X6 FLAT-E250A	178.00	2,400	2	0.427	0.854
383	N1MQA435R	50X6 FLAT-E250A	178.00	2.400	2	0.427	0.854
384	N1MQA436	6MM PLATE-E250A	146.00 X 249.00	47.100	2	1.712	3,424
385	N1MQA437H	L45X45X4H-E350A	3550.00	2.700	1.	9.585	9.585
386	N1MQA437XH	L45X45X4H-E350A	3550.00	2.700	1	9.585	9.585
387	N1MQA438H	5MM PLATE H-E350A	133.00 X 134.00	39.250	4	0.700	2.800
388	N1MQA439H	6MM PLATE H-E350A	105.00 X 160.00	47,100	4	0.791	3.164
389	N1MQA440H	L45X45X4H-E350A	2480.00	2.700	2	6.696	13,392
390	N1MQA440XH	L45X45X4H-E350A	2480.00	2.700	2	6.696	13.392
391	N1MQA441H	L45X45X4H-E350A	1499.00	2.700	2	4.047	8.094
392	N1MQA442H	L75X75X5H-E350A	349.00	5,700	2	1.989	3.978
393	N1MQA443H	L110X110X10H-E350A	148.00	16.600	4	2.457	9.828
394	N1MQA444	L45X45X4-E250A	1456.00	2.700	2	3.931	7.862
395	N1MQA445	L45X30X4-E250A	404.00	2.200	2.	0.889	1.778
396	N1MQA460L	L70X70X5~E250A	3432.00	5.300	2	18.190	35.380
397	N1MQA460R	L70X70X5-E250A	3432.00	5.300	2	18.190	36.380
398	N1MQA461L	L50X50X4-E250A	3369.00	3.000	2.	10.107	20.214
39 9	N1MQA461R	L50X50X4-E250A	3369.00	3.000	2.	10.107	20.214
400	N1MQA462L	6MM PLATE-E250A	214.00 X 258.00	47.10 0	2	2.600	5.200
401	N1MQA462R	6MM PLATE-E250A	214.00 X 258.00	47:100	2	2.600	5.200
402	N1MQA463L	L45X30X4-E250A	1618.00	2.200	2	3.560	7.120
403	N1MQA463R	L45X30X4-E250A	1618.00	2.200	2	3.560	7.120
404	N1MQA464L	L45X30X4-E250A	672.00	2.200	2	1.478	
405	NIMQA464R	L45X30X4-E250A	672.00	2.200	2	1.478	2.956
406	N1MQA465L	50X6 FLAT-E250A	175.00	2.400	2		2.956
407	N1MQA465R	50X6 FLAT-E250A	175.00	2.400		0,420	0.840
		•••		4.700	2	0.420	0.840

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 13 of 15

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No :

BOM/LE17D124/PQABS

Order Ref:

SI.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Reg Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
408	N1MQA466	6MM PLATE-E250A	146.00 X 255.00	47.100	.2	1.754	3,508	·· <u>, , </u>
409	N1MQA467H	L45X45X4H-E350A	3186.00	2,700	1	8.602	8.602	
410	N1MQA467XH	L45X45X4H-E350A	3186.00	2.700	1	8.602	8.602	
411	N1MQA468H	5MM PLATE H-E350A	104.00 X 120.00	39.250	4	0.490	1.960	
412	N1MQA469H	6MM PLATE H-E350A	106.00 X 161.00	47.100	4	.0.804	3.216	
413	N1MQA470H	L45X45X4H-E350A	2323,00	2.700	2	6.272	12.544	
414	N1MQA470XH	L45X45X4H-E350A	2323.00	2.700	2	6.272	12.544	
415	N1MQA471	L45X45X4-E250A	1368.00	2.700	2	3.694	7.388	
415	N1MQA472H	L75X75X5H-E350A	327.00	5.700	2.	1.864	3.728	
417	N1MQA473H	L110X110X10H-E350A	148.00	16.600	4	2.457	9.828	
418	N1MQA474	L45X45X4-E250A	1330.00	2.700	2	3.591	7,182	
419	N1MQA475	L45X30X4-E250A	377.00	2.200	2.	0.829	1.658	
420	N1MQA490L	L70X70X5-E250A	3383.00	5.300	2	17.930	35.860	
421	N1MQA490R	L70X70X5~E250A	3383.00	5.300	2	17.930	35.860	
422	N1MQA491L	L50X50X4-E250A	3354.00	3.000	2	10.062	20.124	
423	N1MQA491R	L50X50X4-E250A	3354.00	3,000	2	10.062	20.124	
424	N1MQA492L	6MM PLATE-E250A	209.00 X 249.00	47.100	2	2.451	4.902	
425	N1MQA492R	6MM PLATE-E250A	209.00 X 249.00	47.100	2	2.451	4.902	
426	N1MQA493L	L45X30X4-E250A	1608.00	2,200	2	3.538	7.076	
427	N1MQA493R	L45X30X4-E250A	1608.00	2.200	2	3.538	7.076	
428	N1MQA494L	L45X30X4-E250A	671.00	2.200	2	1.476	2.952	
429	N1MQA494R	L45X30X4-E250A	671.00	2.200	2	1.476	2.952	
430	N1MQA495L	50X6 FLAT-E250A	175.00	2.400	2	0.420	0.840	
431	N1MQA495R	50X6 FLAT-E250A	175.00	2.400	2	0.420	0.840	
432	N1MQA496	6MM PLATE-E250A	146.00 X 256.00	47.100	2	1.760	3.520	
433	N1MQA497H	L45X45X4H-E350A	2981.00	2.700	1	8.049	8.049	
434	N1MQA497XH	L45X45X4H-E350A	2981.00	2.70 0	1	8.049	8.049	
435	N1MQA498H	6MM PLATE H-E350A	103.00 X 159.00	47.100	4	0.771	3.084	
436	N1MQA499H	L45X45X4H-E350A	2180.00	2.700	2	5.886	11.772	
437	N1MQA499XH	L45X45X4H-E350A	2180.00	2.700	2	5.886	11.772	
438	N1MQA500	L45X45X4-E250A	1237.00	2.700	2	3.340	6.680	
439	N1MQA501H	L75X75X5H-E350A	304.00	5.700	2	1.733	3.466	
440	N1MQA502H	L110X110X10H-E350A	148.00	16.600	4	2.457	9.828	
441	N1MQA503	L45X4SX4-E250A	1189.00	2.700	2	3.210	6.420	

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 14 of 15

BILL OF MATERIAL

Order No :

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No:

BOM/LE17D124/PQABS

Order Ref:

REF/LE17D124

Raw Material L45X30X4-E250A L70X70X5-E250A	Length Size (In MM) 345.00	Unit Wt (In KG)	Req Qty	Per piece	Total Wt	Per Piece
L L70X70X5-E250A	345.00			wt		Ass.Wt
		2.200	2	0.759	1.518	733.10
	3313,00	5.300	2	17,559	35.118	
R L70X70X5-E250A	3313.00					
L L50X50X4-E250A	3278.00			-		
R L50X50X4-E250A	3278.00					
L 6MM PLATE-E250A	210.00 X 249.00					
R 6MM PLATE-E250A	_					
L L45X30X4-E250A				•		
R L45X30X4-E250A						
		•			•	
					2.852	
				0.415	0.830	
					0.830	
		_	2	1. 79 5	3.590	
			1	7.039	7.039	
		2.700	1	7.0 39	7.039	
		47.10 0	4	0.709	2.836	
		2.700	2	5.457	10.914	
	•	2.700	2	5,457	10.914	
	1101,00	2.700	2	2.973	5.946	
= 574 676511 E550A	284.00	5.700	2	1.619	3.238	
	148.00	16.600	4	2.457	9.828	
	1062.00	2.700	2	2.867	5.734	
L45X30X4-E250A	324.00	2.200	2	0.713	1.426	
	_	Total Weig	ht:	65		
	L L50X50X4-E250A R L50X50X4-E250A L 6MM PLATE-E250A R 6MM PLATE-E250A L45X30X4-E250A L45X30X4-E250A L45X30X4-E250A L45X30X4-E250A L45X30X4-E250A S0X6 FLAT-E250A 6MM PLATE-E250A L45X45X4-E250A L L50X50X4-E250A 3278.00 R L50X50X4-E250A 3278.00 L 6MM PLATE-E250A 210.00 X 249.00 R 6MM PLATE-E250A 210.00 X 249.00 L L45X30X4-E250A 1566.00 L L45X30X4-E250A 648.00 L L45X30X4-E250A 648.00 S0X6 FLAT-E250A 173.00 6MM PLATE-E250A 173.00 6MM PLATE-E250A 2607.00 L45X45X4-E250A 2607.00 L45X45X4-E250A 2021.00 L45X45X4-E250A 2021.00 L45X45X4-E250A 284.00 L10X110X10H-E350A 148.00 L45X45X4-E250A 162.00	L L50X50X4-E250A 3278.00 3.000 R L50X50X4-E250A 3278.00 3.000 L 6MM PLATE-E250A 210.00 X 249.00 47.100 R 6MM PLATE-E250A 1566.00 2.200 R L45X30X4-E250A 1566.00 2.200 L L45X30X4-E250A 648.00 2.200 L L45X30X4-E250A 648.00 2.200 S L45X30X4-E250A 173.00 2.400 G FLAT-E250A 173.00 2.400 6MM PLATE-E250A 173.00 2.400 6MM PLATE-E250A 2607.00 2.700 L45X45X4-E250A 2607.00 2.700 L45X45X4-E250A 2021.00 2.700 L45X45X4-E250A 2021.00 2.700 L45X45X4-E250A 2021.00 2.700 L45X45X4-E250A 101.00 2.700 L45X45X4-E250A 2021.00 2.700 L45X45X4-E250A 101.00 2.700 L45X45X4-E250A 101.00 2.700 L45X45X4-E250A 101.00 2.700 L45X45X4-E250A 101.00 2.700 L45X45X4-E250A 1062.00 2.700	L L50X50X4-E250A 3278.00 3.000 2 R L50X50X4-E250A 3278.00 3.000 2 L 6MM PLATE-E250A 210.00 X 249.00 47.100 2 R 6MM PLATE-E250A 1566.00 2.200 2 L L45X30X4-E250A 1566.00 2.200 2 L L45X30X4-E250A 648.00 2.200 2 L L45X30X4-E250A 648.00 2.200 2 L L45X30X4-E250A 173.00 2.400 2 SOX6 FLAT-E250A 173.00 2.400 2 GMM PLATE-E250A 166.00 X 261.00 47.100 2 L45X45X4-E250A 2607.00 2.700 1 GMM PLATE H-E350A 2607.00 2.700 1 GMM PLATE H-E350A 2021.00 2.700 2 L45X45X4-E250A 101.00 2.700 2 L45X45X4-E250A 101.00 2.700 2 L45X45X4-E250A 1062.00 5.700 2 L45X45X4-E250A 1660.00 16.600 4 L45X45X4-E250A 1062.00 2.700 2	L L50X50X4-E250A 3278.00 3.000 2 9.834 R L50X50X4-E250A 3278.00 3.000 2 9.834 L 6MM PLATE-E250A 210.00 X 249.00 47.100 2 2.463 R 6MM PLATE-E250A 1566.00 2.200 2 3.445 L 45X30X4-E250A 1566.00 2.200 2 3.445 L 45X30X4-E250A 648.00 2.200 2 1.426 R L45X30X4-E250A 648.00 2.200 2 1.426 R L45X30X4-E250A 173.00 2.400 2 0.415 SOX6 FLAT-E250A 173.00 2.400 2 0.415 GMM PLATE-E250A 146.00 X 261.00 47.100 2 1.795 L45X45X4-E250A 2607.00 2.700 1 7.039 K L45X45X4-E250A 2607.00 2.700 1 7.039 C L45X45X4-E250A 2021.00 2.700 2 5.457 L45X45X4-E250A 101.00 2.700 2 5.457 L45X45X4-E250A 101.00 2.700 2 5.457 L45X45X4-E250A 101.00 2.700 2 2.973 L75X75X5H-E350A 284.00 5.700 2 1.619 L110X110X10H-E350A 1062.00 2.700 2 2.867 L45X45X4-E250A 1062.00 2.700 2 2.867	L L50X50X4-E250A 3278.00 3.000 2 9.834 19.668 R L50X50X4-E250A 3278.00 3.000 2 9.834 19.668 R L50X50X4-E250A 210.00 X 249.00 47.100 2 2.463 4.926 R 6MM PLATE-E250A 210.00 X 249.00 47.100 2 2.463 4.926 L L45X30X4-E250A 1566.00 2.200 2 3.445 6.890 R L45X30X4-E250A 1566.00 2.200 2 3.445 6.890 L L45X30X4-E250A 648.00 2.200 2 1.426 2.652 R L45X30X4-E250A 648.00 2.200 2 1.426 2.852 S0X6 FLAT-E250A 173.00 2.400 2 0.415 0.830 R 50X6 FLAT-E250A 173.00 2.400 2 0.415 0.830 GMM PLATE-E250A 146.00 X 261.00 47.100 2 1.795 3.590 L45X45X4-E250A 2607.00 2.700 1 7.039 7.039 R 6MM PLATE H-E350A 99.00 X 152.00 47.100 4 0.709 2.836 L45X45X4-E250A 2021.00 2.700 2 5.457 10.914 L45X45X4-E250A 101.00 2.700 2 5.457 10.914 L45X45X4-E250A 101.00 5.700 2 2.973 5.946 L75X75X5H-E350A 284.00 5.700 2 1.619 3.238 L110X110X10H-E350A 148.00 16.600 4 2.457 9.828 L45X45X4-E250A 1062.00 2.700 2 2.867 5.734	

Associated Parts

Part Code	Type of Association	Associated with	Total Weight
			_

No Association Part

Raw Material Involved		
	Standard Material	Total Weight (In Kg)
BASIC BODY FOR TOWER TYPE-"QA" (132kV, WZ-4)		
2MM PLATE-E250A	N.C.	
50X6 FLAT-E250A	MS	2.560
·	MS	10.204
SMM PLATE H-E350A	h pere	10.204
	HT.	16.588

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

3283.916

Page: 15 of 15

BILL OF MATERIAL

Order No: LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No: BOM/LE17D124/PQABS	• •	Order Ref:	REF/LE17D124
5MM PLATE-E250A	MS		
6MM PLATE H-E350A	нт		101.750
6MM PLATE-E250A	Mis		159.688
8MM PLATE H-E350A	H T		91.220
L100X100X7H-E350A	HT		56.476
L100X100X8H-E350A	нт		14.808
L110X110X10H-E350A	HT		394.460
L110X110X8H-E350A	нт		324.568
L120X120X10H-E350A	нт		20.152
L120X120X8H-E350A	HT		344.272
L130X130X10H-E350A	нт		22.108
L45X30X4-E250A	MS		524.020
L45X45X4-E250A	MS		632.586
L45X45X4H-E350A	HT		641.796
L50X50X4-E250A	MS		257.400
L50X50X4H-E350A	HT		685.416
L55X55X4-E250A	MS		130.350
L55X55X4H-E350A	HT		129.570
L55X55X5-E250A	MS		41.850
L55X55X5H-E350A	HT		62.960
L60X60X4-E250A	MS		149.846
L60X60X5H-E350A	нт		304.276
L65X65X4-E250A	MS		409.330
L65X65X5-E250A	MS		94.976
L65X65X5H-E350A	HT		9 5. 266
L70X70X5-E250A	Ms		.258.776
L70X70X5H-E350A	нт		431.336
L75X75X5H-E350A	HT		7.548
L75X75X6H-E350A	нт		23.348
L90X90X6H-E350A			110,160
	HT		20,400
	Total		6570.064
	HT		3286.148

MS

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 1 of 1

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No: BOM/LE17D124/PQABB

Order Ref:

REF/LE170124

SI.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
	BOLTS & NU	TS OF BASIC BODY FOR	TOWER TYPE-"QA	" (132kV, W	Z-4)	······································		
1	PQABB1	M16X35MM LONG (IS:12427)			1012	0.119	120,428	
2	PQABB2	M16X40MM LONG (IS:12427)		0.126	927	0.126	116.802	
3	PQABB3	M16X45MM LONG (IS:12427)		0.134	415	0.134	55.610	
4	PQABB4	M16X50MM LONG (IS:12427)		0.142	316	0.142	44.872	
5	PQABB5	M16X55MM LONG. (IS:12427)		0.150	8	0.150	1.200	
6	PQABB6	M16x3.5MM SPRING WASHER IS3063		0.009	2678	0.009	24.102	
7	PQABB7	M16x175LG SB (50 OD) 2N+1SP		0.423	160	0.423	67.680	
				Total We	ight :		430.694	

Associated Parts

Part Code	Type of Association	Associated with	Total Weight

No Association Part

Raw Material Involved	Standard Material	Total Weight (In Kg)
BOLTS & NUTS OF BASIC BODY FOR TOWER TY WZ-4)	PE-"QA" (132kV,	
M16x175LG SB (50 OD) 2N+1SP		67.400
M16x3.5MM SPRING WASHER IS3063		67.680
M16X35MM LONG (IS:12427)		24.102
M16X40MM LONG (IS:12427)		120.428
M16X45MM LONG (IS:12427)		116.802
M16X50MM LONG (IS:12427)		55.610
M16X55MM LONG (IS:12427)		44.872
(20,1272)	_	1.200
	Total	430.694

^{** --} Item Welded with another item

^{*** --} Item Assembled with another item

Date:

15-Feb-2019

Page: 1 of 1

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No :

BOM/LE17D124/PQABW

Order Ref:

REF/LE17D124

SI.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
	PACK WASH	ERS OF BASIC BODY FOR 1	OWER TYPE-"Q	A" (132kV, V	VZ-4)			
1	PQABW1	M16x4MM ROUND PACK WASHER 1S2016		0.014	26	0.014	0.364	
2	PQABW2	M16x5MM ROUND PACK WASHER IS2016		0.018	79	0.018	1.422	
3	PQABW3	M16x6MM ROUND PACK WASHER IS2016		0.021	64	0.021	1.344	
4	PQABW4	M16x8MM ROUND PACK WASHER IS2016		0.028	74	0.028	2.072	
5	PQABW5	M16x10MM ROUND PACK WASHER IS2016		0.036	27	0.036	0.972	
				Total Wei	ight :		6.174	

Associated Parts

Part Code Type of Association Associated with Total Weight

No Association Part

Raw Material Involved	Standard Material	Total Weight (In Kg)
PACK WASHERS OF BASIC BODY FOR TOWER TYPE-"QA" (132kV, WZ-4)		Total Weight (In Kg)
M16x10MM ROUND PACK WASHER IS2016		0.073
M16x4MM ROUND PACK WASHER IS2016		0.972
M16x5MM ROUND PACK WASHER IS2016		0.364 1.422
M16x6MM ROUND PACK WASHER IS2016		
M16x8MM ROUND PACK WASHER IS2016		1.344
		2.072
1	otal	6.174

Date:

15-Feb-2019

24.360

24.360

Page; 1 of 1

BILL OF MATERIAL

Order No :

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No : BOM/LE17D124/POAHR

					Order Ref:	REF/L	E17D124
Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
HANGER ROD	OF 20MM DIA FOR TOWE	R TYPE-"QA" (132)	kV, WZ-4)	· ·			733.17(
PQAHR1	20MM DIA HANGER ROD	_	2.030	12.	2.030	24.360	
			Total Wei	ght :		24.360	<u> </u>
ated Parts		-					
ie	Type of Association	Associated with	To	otal We	eight		
	No Associa	tion Part	<u></u>				
terial Involved			Standard	Mater		Tabali	
R ROD OF 20M	IM DIA FOR TOWER TYPE	-"QA" (132kV, WZ-		-		rotar	Weight (In Kg)
	HANGER ROD PQAHR1 ated Parts de	HANGER ROD OF 20MM DIA FOR TOWE PQAHR1 20MM DIA HANGER ROD ated Parts de Type of Association No Association Terial Involved	HANGER ROD OF 20MM DIA FOR TOWER TYPE-"QA" (132) PQAHR1 20MM DIA HANGER ROD ated Parts de Type of Association Associated with No Association Part	HANGER ROD OF 20MM DIA FOR TOWER TYPE-"QA" (132kV, WZ-4) PQAHR1 20MM DIA HANGER ROD 2.030 Total Wei ated Parts Type of Association Associated with Total Roy No Association Part Terial Involved	HANGER ROD OF 20MM DIA FOR TOWER TYPE-"QA" (132kV, WZ-4) PQAHR1 20MM DIA HANGER ROD 2.030 12 Total Weight: Total Weight: No Association Part Terrial Involved Standard Mater	HANGER ROD OF 20MM DIA FOR TOWER TYPE-"QA" (132kV, WZ-4) PQAHR1 20MM DIA HANGER ROD 2.030 12 2.030 Total Weight: Atted Parts Type of Association Associated with Total Weight No Association Part Terrial Involved Standard Material	Part Code Raw Material Length Size (In MM) (In KG) Qty wt. HANGER ROD OF 20MM DIA FOR TOWER TYPE-"QA" (132kV, WZ-4) PQAHR1 20MM DIA HANGER ROD 2.030 12 2.030 24.360 Total Weight: 24.360 Associated with Total Weight No Association Part Total Involved Standard Material Total Total Involved Total Material Total

Total

^{*** --} Item Assembled with another item

L&T Construction

Power Transmission & Distribution

CLIENT:

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

TAMAKOSHI – KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT -PROJECT:

400/220 KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE

LOA No.: 073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4M-GA-0101

BOM No.: BOM/LE17D124/132kV/QA/001

NO OF SHEETS:

4

CAT 1+ ॥, फेब्रीकेशन / विश्वत बरार्ते थी गई -पावरग्रिक प्रामिन्दिकार विकास वस्तायेज अनुवाद का
 ॥. टिप्पणियो को का 4 with (हस्ताक्षर)

(अभिवंश / व. अधिवंश 9/5/18 (तिथि)

BILL OF MATERIAL

STUB & CLEATS FOR TOWER TYPE - "QA" (132kV, WZ-4)

पावर ग्रिड कारपोरशन काम इडिया लिं This document is recommended for approval for construction of 400kV /132kV D/C TAMAKOSHI - BAFGRASISE - KATHWANDU IN NEPAL

		WEIGHT OF STRUCTURE	
	HT MEMBERS: BOM/LE17D124/PQA	SC/SQASC/R-0	308.728
	MS MEMBERS INCL ACCESSORIES ETC.	UDING PACK WASHERS AND	-
-14	WEIGHT OF BOLTS & NUTS, SPRING WASHERS: BOM/LE17D124/PQASB/SQASB/R-0		
Approved / Released For F Approved / Released For i subject to incorporation of	briest an Construction priments, modification	TOTAL WEIGHT OF STRUCTURE:	313.304 Kgs

proved / Rolessed For F

as noted. Revised drawings/s ☐ To be resubmitted for approval after incorporating the comments

For information and record

☐ Not approved

Checked By: Date: Nepal Electricity Authority Tamakoshi-Kathmandu 220/400 kv

Date: 2018/5/18

Approve	d By: Xw D	ate:			Sap	182	1 Ra
0	01.03.18	FIRST SI	UBMISSION FOR APPROVAL	L	PU	BSR	T CSR
REV.	DATE		DESCRIPTION		CHKD.	REVED.	APPD.
PREP	ARED BY	CHECKED BY	REVIEWED BY	APPROVE	D BY	D	ATE
A	LEX	PU	BSR	CSF	₹	01.	03.18
			The second secon				

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

LARSEN & TOUBRO LIMITED

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNA! - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/2 - - BOM/LE17D124/PQASC/SQASC/R-0	20 KV -		Date Page	01-03- 1	-2018 of 1
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. l Qty.	Unit/Ass. Weight	Total Weight
STUB & CLEA	TS FOR TOWER TYPE-"QA" (132kV, WZ	<u>z-4)</u>				
1 N1MQA1H	L130x130x10H-E350A	3566.00	19.700	. 4	70.250	281.000
2 N1MQA2LI	H L50x50x6H-E350A	165,00	4.500	8	0.743	5.944
3 N1MQA2RI	H L50x50x6H-E350A	165.00	4.500	8	0.743	5.944
4 N1MQA3H	L50x50x6H-E350A	220.00	4.500	16	0.990	15.840
				* * :		,
			TOTAL	WEIGHT	Γ:	308.728

*** - Item welded with another item

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNA! - 600 089. INDIA.

PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathma - - BOM/LE17D124/PQASC/SQA		Date Page	
Srl No	Section Invloved		Section Weight	
STUB & CL	EATS FOR TOWER TYPE-"QA" (1	132kV, WZ-4)	W +	
1	L130x130x10H-E350A	*	281.000	
2	L50x50x6H-E350A	. *	27.728	
	Total	·	308.728	

LARSEN & TOUBRO LIMITED

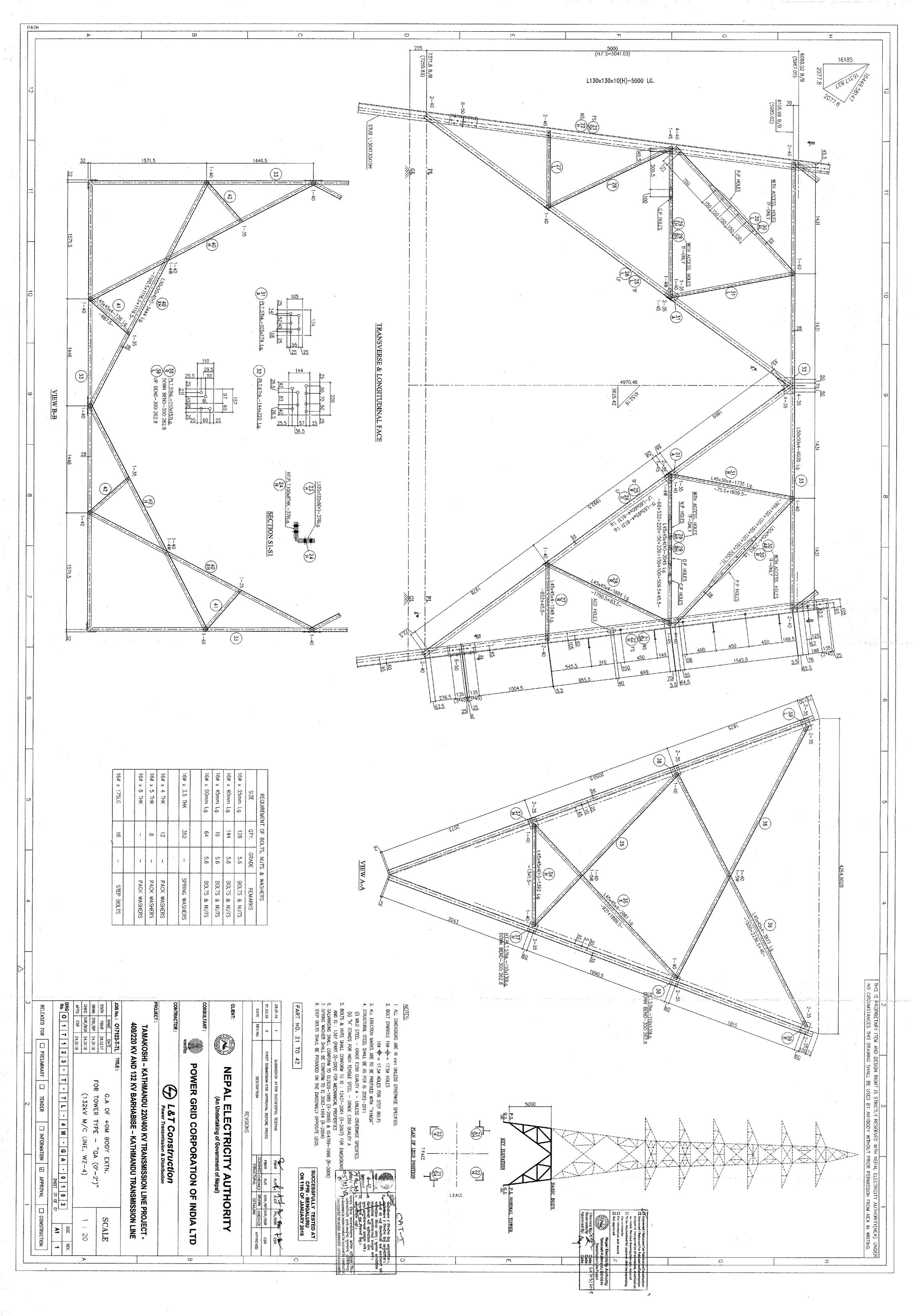
ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

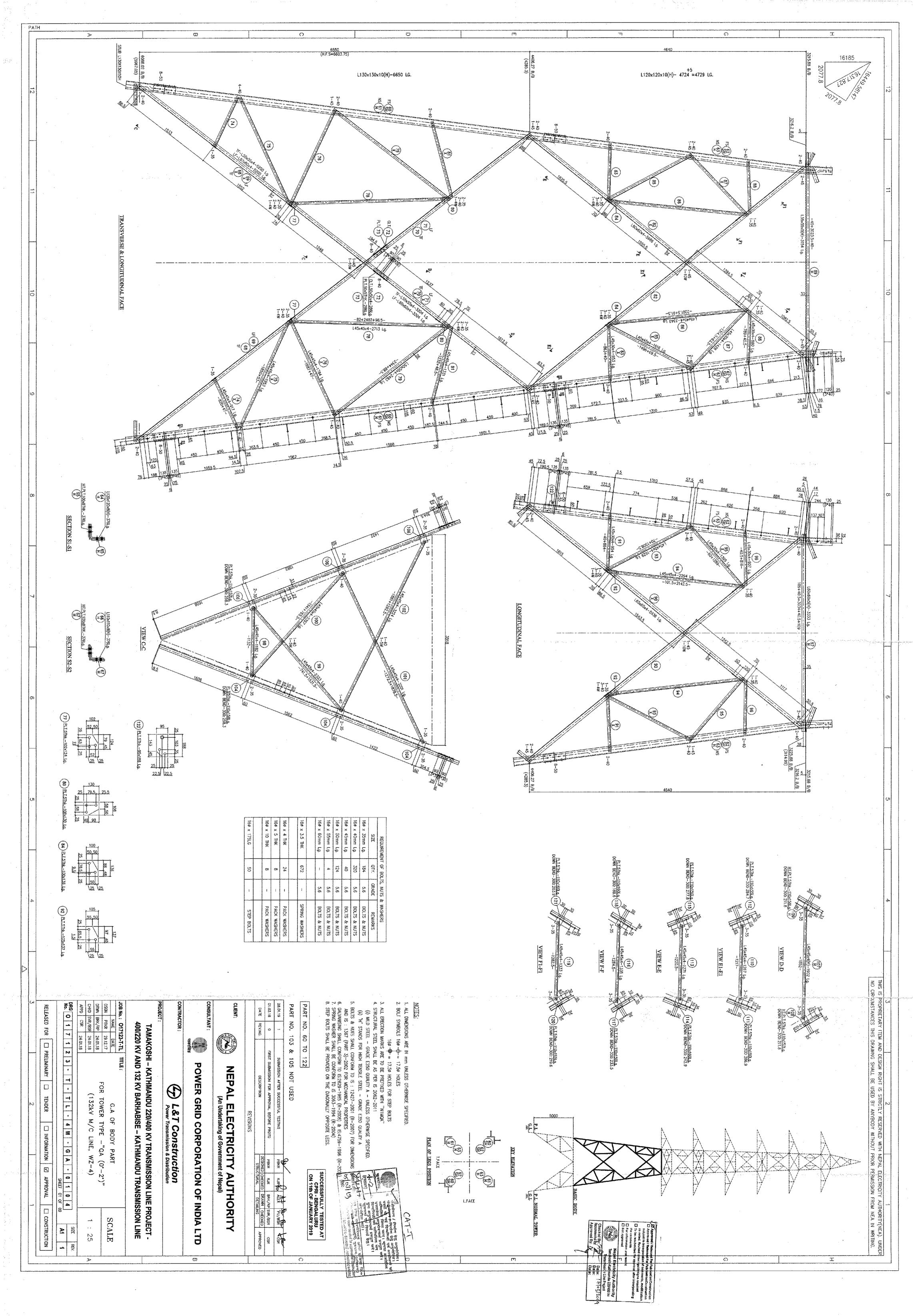
MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

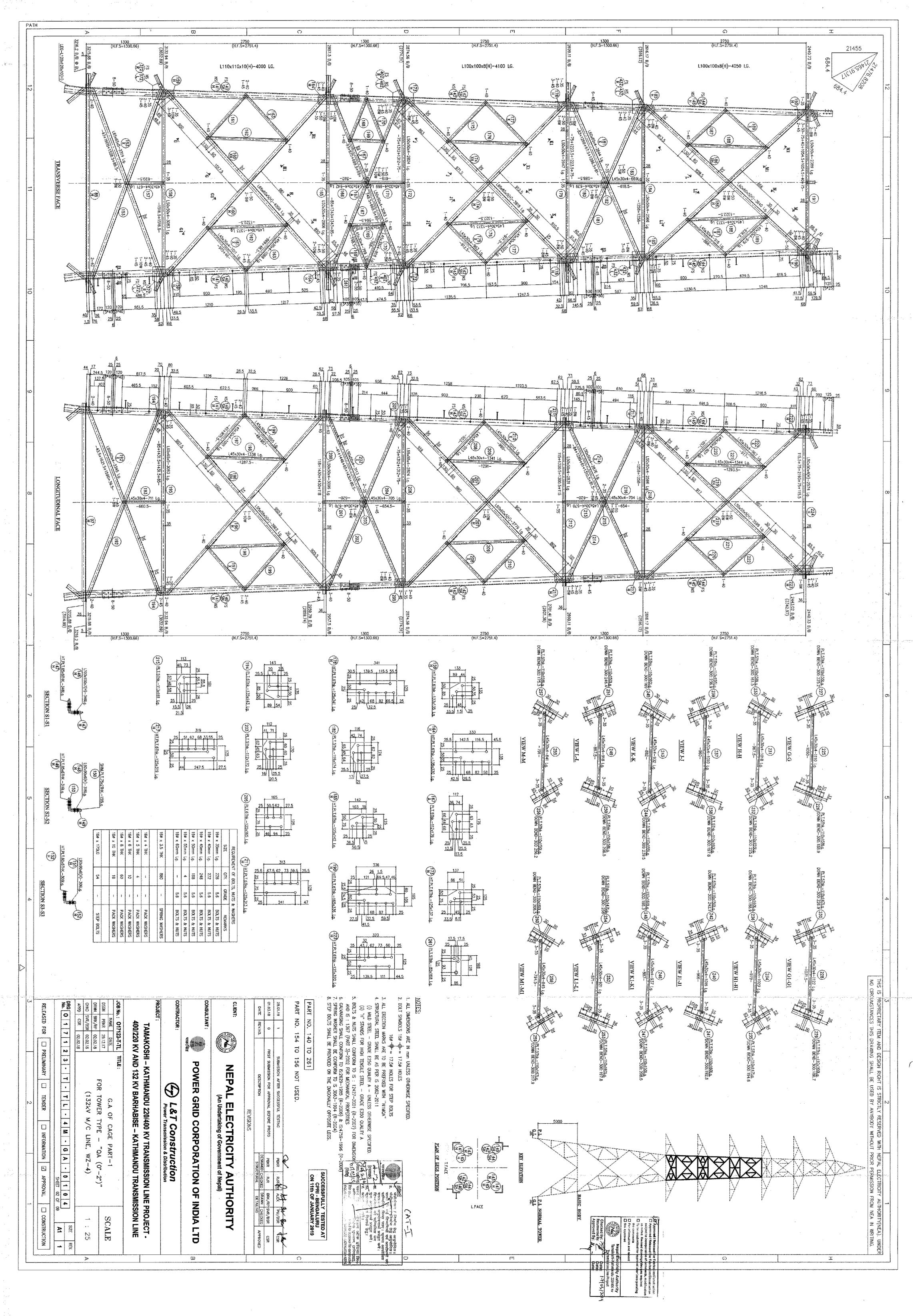
PHONE: 044 - 22704000 FAX: 044 - 22705494

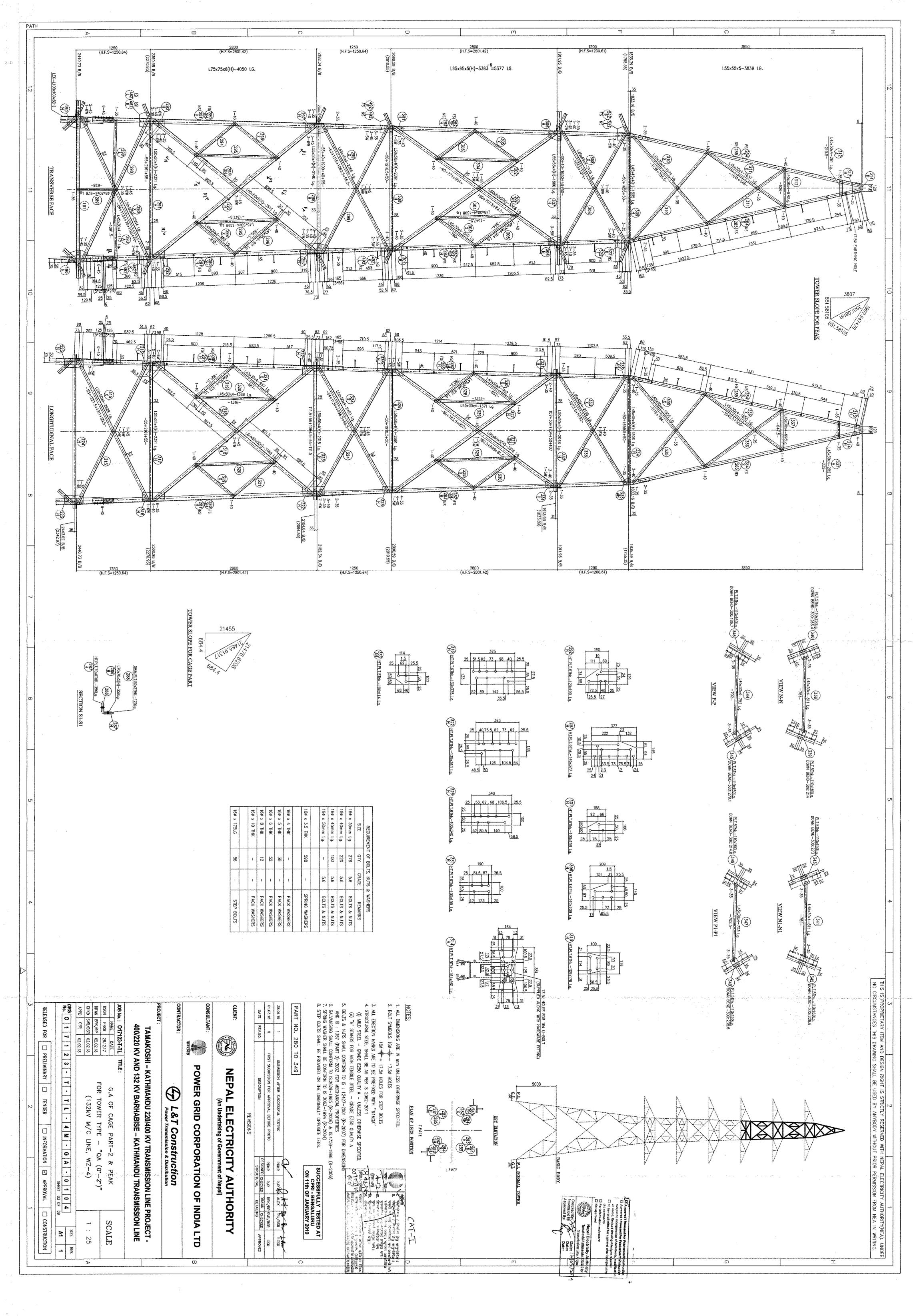
BILL OF MATERIAL

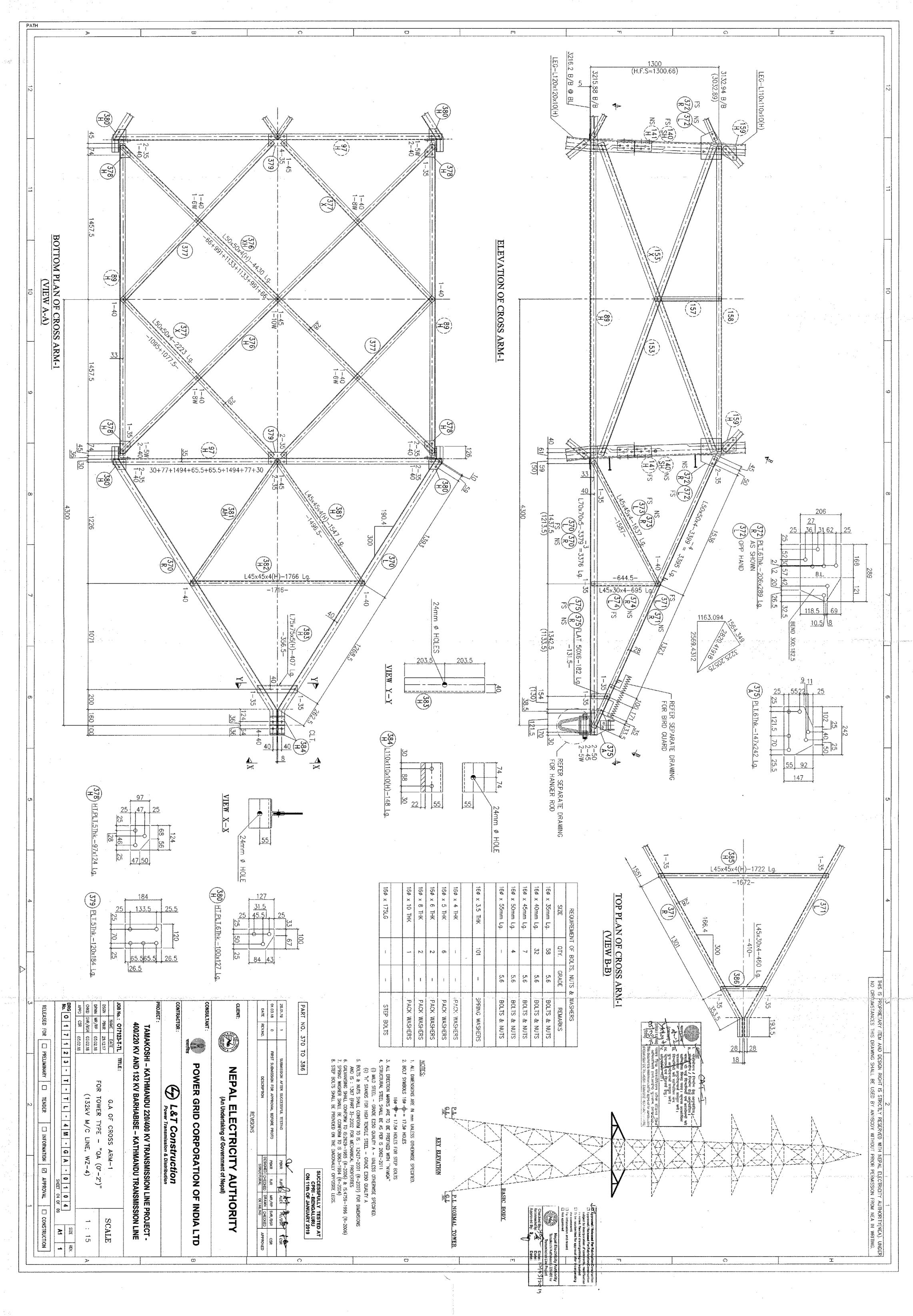
Project	LE17D124 - Intra-Pith-Kathmandu 400	/220 KV		:		
Order Ref.	-		Date	2018		
Drg No.	-	•		Page	1	of 1
BOM No.	BOM/LE17D124/PQASB/SQASB/R-0					
Sri Erection	Section	Length	Unit WŁ	Reqd. (Jnit/Ass.	Total
No Mark		Size(In MM)	In Kgs	Qty.	Weight	Weight
BOLTS & NUT	S OF STUB & CLEATS FOR TOWER T	YPE-"QA" (132kV, WZ-4)				
1 SQASB1	M16x45MM LONG (IS:12427)	. `	0.134	. 32	0.134	4.288
2 SQASB2	M16x3.5mm SPR. WSR-IS3063	•	0.009	32	0.009	.288
				:		
				:		
		•		Š		
			TOTAL	WEIGHT		4.576
		•	IOIAL	WEIGH !	•	4.070


*** - Item welded with another item


ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN


MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA.


PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172


Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmand - - BOM/LE17D124/PQASB/SQASB		Date Page	01-03-2018 1 of 1
Srl No	Section Invloved	:	Section Weight	
BOLTS &	NUTS OF STUB & CLEATS FOR TOW	ER TYPE-"QA"	(132kV, WZ-4)	
1	M16x3.5mm SPR. WSR-IS3063	,	.288	
2	M16x45MM LONG (IS:12427)	<i>i</i> .	4.288	
	Total		4.576	

TOWER DESIGN QD TYPE

IS PROPRIETORY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA). UNDER NO CIRCUMSTANCES THIS DRAWING . Lee used by anybody without prior permission from nea in writing	Chec Recome	pproved / To bject to indi- mated. Revi the indistribution a commente or information at approved	numeration sed draw itted for a n and rec Nepal E Tamakos	ngs/designs reproved after la part CAT Electricity A hi-f-athmandu imission Line	Construction , modification equired neorporating II. while arithmeter than a series of the composition of th	CAT बान / निर्माण हेतु अनुमोदित। बान / निर्माण हेतु अनुमोदित। बान / निर्माण हेतु अनुमोदित। बान श्री निर्माण हेतु अनुमोदित। बान के स्वामाण कर्या आशोधित क्षेत्र अनुमोदनार्थ प्रश्तुत कर्य। क्षेत्र अनुमोदनार्थ प्रश्तुत कर्य। क्षेत्र के स्वामाण प्रश्तुत कर्य। क्षेत्र के स्वामाण प्रश्तुत कर्य। क्षेत्र क्षेत्र विकार्थ हेतु। क्षेत्र के स्वामाण प्रश्तुत क्षेत्र । बिज्ञकी (पार लाईन) गुज्याम, (हरियाण)) क्षित्र के (पार लाईन) गुज्याम, (हरियाण) क्षेत्र (पार लाईन) गुज्याम, (हरियाण) क्षेत्र (पार लाईन) स्वामाण क्षेत्र (पार लाईन) क्षेत्र के स्वामाण क्षेत्र (पार लाईन)				
7. S	DATE REV.				DESCRIPTION	DESIGNED	CHECKED APPROVED			
SSICE					REVISIONS					
THIS IS PROPRIETORY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NI SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING	CONTRAC	TAM KVE	BARHA	BISE - KA	NEPAL ELECTRICITY AUTHORITY (An Undertaking of Government of Nepal) L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC MANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 HMANDU TRANSMISSION LINE (TKTL)					
돌	JOB No.	017	123-T-	<u>rt</u>	····					
	TOTAL NO	D. OF PAG	ES	18	TITLE:		{			
뫒	1 1	NAM		DATE	FOUNDATION DESIGN 8	F TOWER TYPE				
THIS SHAL	000:	L /D			8 "QD/DE" +0M BE					
THIS SHAL	DSGN	MD		19.03.2018			[
THIS	СНКД	RJI	₹	19.03.2018		L (DEPTH=3M)				
THIS			₹		WET SO	L (DEPTH=3M)	NE - 4)			
THIS	СНКД	RJI CSI	₹	19.03.2018 19.03.2018	WET SO	L (DEPTH=3M)	•			

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC

PROJECT	TAMAKOSHI 10 KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU	Docume	Date 19.03.2018	
	TRANSMISSION LINE (TKTL)	O17123-T-TL-4		
	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet
TITLE	"QD/DE" +0M BE_WET SOIL (DEPTH=3M) (132kV D/C BEAR) (WIND ZONE - 4)	MDJ	RJŘ	3 OF 18

Design Summary For Different Load Cases:

S.No.	Extension	FC	K-bar	L-bar	M-bar	N-bar	Chimney Interaction Ratio		FOS			SHEAR	
							Compression	Tension	Uplift	Bearing	Sliding	Overturning	CHECK
1	+0m B.E	903	GOVERNS							1.88			SAFE
2	+0m B.E	974		GOVERNS	GOVERNS	GOVERNS			1.01				SAFE
3	+0m B.E	1260					0.43						SAFE
4	+0m 8.E	938						0.46					SAFE
5	+0m B.E	1297									2.27	1.23	SAFE

Note: In addition to the governing load cases mentioned above, the foundation has been checked for reactions pertaining to all the load cases as mentioned in the reaction document.

	L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC				
	TAMAKOSHI (6 KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132		Document No		
PROJECT	KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-	T-TL-4M-DC-4001B	19 03 2018	
	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet	
TITLE	"QD/DE" +0M BE WET SOIL (DEPTH=3M) (132kV D/C BEAR) (WIND ZONE - 4)	MDJ RJR		2 of 18	

Input Parameters for Foundation Design :-

SLNo	Description	Variable	Unit	Value
1	L st Slope of Tower Leg	Φ	Deg	12.613
2	Depth of lower Layer	DI :	m	1.350
3	Depth of Upper Layer (minimum)	Du	m	1.500
4	Depth of Upper Layer (maximum)	Du	m	3.000
5	Unit Weight of Soil in Lower layer	\mathbf{w}_{1}	Kg/m³	940
6	Unit Weight of Soil in Upper layer	Wυ	Kg/m ³	1440
7	Angle of Repose in Lower Layer	α	Deg	15
8	Angle of Repose in Upper Layer	β	Deg	25
9	Limit Bearing Capacity of Soil	Lbcs	Kg/m ²	13675
10	Factor of Safety applied on foundation loads	Fos		t.100
11	Total Depth of Foundation Below G.L (Including Pcc Pad)	[υ	m	3.000
12	Plinth Height in mm	[Dp	П	0.225
13	Unit Weight of Concrete in Lower Layer	Wel	Kg/m³	1400
14	Unit Weight of Concrete in Upper Layer	Wcu	Kg/m ³	2400
15	Characteristic Strength of Concrete	Fck	N/mm ²	20
16	Characteristic Strength of Steel	Fy	N/mm ²	500
17	Cover To Chimney Reinforcement	Ccc	mm	50
18	Cover To Footing Slab Reinforcement	Ccs	mm	50
19	Slope of Tower Leg	a	Deg	17.560

	Assumed Dimensions of Foundation Refer Figure-1					
1	Footing Width at the Bottom of Slab -I	В	m	5.660		
2	Footing Width At Bottom of Slab - II	B ¹	m	5.660		
3	Footing Width At Top of Slab - Il	BI	m	5.260		
4	Width of Footing At Bottom of Slab - III	B2	m	2.520		
5	Width of Chimney	Вс	m	0.600		
6	Depth of PCC Pad	Dpad	m	0.050		
7	Depth of Slab -I Fom top of PCC Pad	DI	m	0.100		
8	Depth of Slab -II from top of Slab-1	D2	m	0.200		
9	Depth of Slab -III from top of Slab-II	D3	m	0.370		
10	Height of Chimney Upto G.L. From Top of Slab - III	De	m	2.280		

		QD/DE +0M B.E		
Ultima	te Foundation Loads in kg - Refer Doc. No. 017123-T-TL-4M-DC-4000	Supp No 2	Supp No. 4	
		LC-903	LC-974	
Sr.No	Type of Load	CASE-1	CASE-2	
1	Compression	174326		
2	Uplift		161530	
3	Side Thrust (Transverse)	3034	2159	
4	Side Thrust (Longitudinal)	5129	4117	

(Over Load Factor 1.1 included)

6	$\widehat{\mathcal{L}}$		CONSTRUCTION ISSION AND DISTRIBUTION IC			
'		TAMAKOSHI 10 KATHMANDU 220/400 KV TRANSMISSIO			Pocument No T-TL-4M-DC-400 B	Date
PRO	SJECT	KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)		Q171232	1-1 C-4M-DC -400 D	19.03.2011
		FOUNDATION DESIGN & DRAWING		DESIGNED	CHECKED	Sheet
TI	TLE	"QD/DE" +0M BE WET SOIL (132kV D/C BEAR) (WIND		MDJ	RJR	3 of 18
		(1) CHECK	K FOR UPLIFT (REFER FIGURE	- 2)		
Sr. No.		Description	Ε	xpression		Value
	Horizo	ontal Offset of cone in Lower Layer	X = 1.35*Tan(15)		"	0.3617
(b)	Morizo	ontal Offset of cone in Upper Layer	Y = 1.5 * Tan(25)			0.6995
(c)	Gross	volume of soil in Lower Layer in M ³	{(5.66)^2 *1.35+(2*5.66*1.35*	0.3617)+(PI/ 3	*1.35*(0.3617)^2)}	48.961
(d)	Volum	ne of Concrete in Lower Layer in M ³	((5.66^2+5.26^2+5.66*5.26)*0	.2/3)+(2.52^2*0	0.37)+ (0.6^2*0.78)	8.595
(e)	Net Vo	olume Lower Layer in M ³	(48.961-8.595)			40.365
		B*B + 4B*H1*tanφ1+ π H1 ² *tan ² φ1	(5.66^2 + 4 x 5.66 x 1.35 x tan(15)+3 142x1.35	5^2xtan(15)^2)	40.6360
		B*B+4B* (H1*tanφ1+ H2*tanφ2) + *tanφ1+ H2*tanφ2)²	(5.66^2 + 4 x 5.66 x (0.3617+0.	6995)+3.142x(0.3617+0.6995)^2)	59 599
		volume of Soil in Upper Layer in M ³				74,724
(g)	(As po	er CBIP manual No.10), A1+A2+ sqrt(A1A2))*H ₂ /3	(40.636 + 59.599 + sqrt (40.6.	36 x 59.599)) :	x 1.5/3	74.724
(h)	Volum	ne of Concrete in Upper Layer in M ³				0.540
(i)	Net V	olume of Soil in Upper Layer in M3	(74.724-0.54)			74.184
()	Weigh	it of Soil Resisting Uplift in Kg	(40.365*940) + (74.184 * 1440))		144768
(k)	Weigh	nt of Concrete in Kg	(8.595*1400)+(0.54*2400)+(0.	1*5.66^2*1400)+(0.6^2*0.225*2400)	18009
(l)	Total	Resistance against Uplift in Kg	(144768.06 + 18008.993)			162777
	Facto	r of Safety against Uplift				
	1		162777.05 / 161529.69			1.01
			Since F.O.S is > 1.00, Founda	tion is Safe aga	ainst Uplift	
	<u> </u>					
	(A)	(2) CHEC Bearing Pressure Due to Downthrust in Kg/m ²	CK FOR DOWNTHRUST			
(a)	1	thrust acting perpendicular to footing (Y1)	(174326.14 * (COS(17.56)))			166203
	ŀ	·	(0.6^2 x 0.225x2400)+(0.6^2x1			13578
(b)	Over	Load due to Concrete (Kg)	1440))+[(0.6^2x0.78)+(2.52^2x (5.66^2+5.26^2+5.66x5.26)x0.2 1440))		·	13370
(c)	Total I	Downthrust acting normal to footing in Kg	(166202.81+13577.54)			179780
		ig Pressure Due to Downthrust (Kg/m²) (P/A)	(179780.35 / 5.66^2)			5612
	1	of Slab below chimney in M	(0.1+0.2+0.37)			0.670
. ,	l '	ent Due to Eccentricity (MX & MZ)	(166202.81 * Tan (12.613) *0.6	7)		24918
	i	ig Pressure Due to Eccentricity in Kg/m² (Pe/Z)	(24918/(5.66^3/6)	•		825
15/	[aning ressule Due to Eccentricity in Rg/III (FGZ) (247167(3.00.376)				020

(5612 + 1649.09)

(13675 / 7261 09)

(24918/(5.66^3/6)+(24918/(5.66^3/6))

Since F.O.S is ≥ 1.00 , Foundation is Safe Against Downthrust

(h) Bearing Pressure Due to Eccentricity in Kg/m² (Pe/Z)

(i) Total Bearing Pressure in Kg/m²

(j) Factor of Safety against Downthrust

1649

7261

1.88

6	\widehat{Z}			STRUCTION N AND DISTRIBUTION IC			
PRO	NECT	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISS KV BARHABISE - KATHMANDU TRAN				Document No F-TL-4M-DC-4001B	Pate 19.03.2018
•		FOUNDATION DESIGN & DRAWIN			DESIGNED	CHECKED	Sheet
ТГ	TLE	"QD/DE" +0M BE WET SOII (132kV D/C BEAR) (WIND			MĐJ	RJR	4 of 18
Sr. No.		Description		E	xpression		Value
	(B) B	earing Pressure Due to Transverse Side Thrust i	n Kg/r	n²			
(a)	Coeffic	cient of Passive Earth Pressure in upper layer (Kp1)		(1+ Sin (25)) / (1- Sin (25))			2.464
	Coeffic	cient of Passive Earth Pressure in lower layer (Kp2)		(1+ Sin (15)) / (1- Sin (15))			1.698
(b)	Depth	of Chimey above Slab-Ill	;	Dc = 2.28			2.280
(c)	To fine	d the depth of effective earth pressure He(=H1+H2),	equati	ng the passive pressure of soil to	the side thrust		
				$\left[\frac{1}{2} K p_1 W_u H_1^2 B_c + K p_2 W_u H_1 H_2 \Omega_c \right]$	3 ₆ +1/2*Kp₂W _U l	$H_2^2B_C=S.T$	
	Solvin	g this equation for H ₂ with					
			A=	1/2*K _{P2} W _L B _C	=0.5*1.698*94	0*0.6	478.836
			В=	$Kp_2W_0H_1B_0$	=1.698*1440*6	(1.5-0.5)*0.6	1467.072
				~	=0 5*2.464*14	40*(1 5-0.5)^2*0.6-3034	-1969.892
				(-B+sqrt(B ² -4AC))/2A		, ,	1.010
	Denth	of Effective earth pressure Zone (He) in M	-		=1.01+(1.5-0.5	a	2.010
(d)		Effective Pressure Zone (He) >(2.28- 0.5)Therefore \$			'	,	2.010
(0)	Dacieti	ing Soil Force in upper layer Kg (R1) =		0.5*2.464*1440*(1.5-0.5)^2*0).6		1064.448
(€)		•		1.698*1440*(1.5-0.5)*(2.28-1	.5)*0.6		1144
		ing Soil Force in lower layer Kg (R2) =		0.5*1.698*940*(2.28-1.5)^2*0	1.6		291
		ing Soil Force in lower layer Kg (R3) =					3500.000
	Total I	Resisting Soil Force in Kg (R) =		1064.448+1144.31616+291.323 (1064.448*((1.5-0.5)/3+(2.28-1		6*((2.28-	2500.088
(f)	C.G of	Resultant force in m		1.5)*0.5)+291.3238224*((2.28-			0.683
(g)	Mome	nt @ Base Due to Side Thrust (Kg-m)		3034.34*(3-0.05+0.225)-2500.0	9*(0.683+0.67)	6251
(h)	Bearin	g Pressure due to SideThrust in Kg/m ²		(6251.41/ (5.66^3/6))			207
	(C) B	earing Pressure Due to Longitudinal Side Thrust	in Kg	/m²			
(c)	To fine	d the depth of effective earth pressure $He(=H_1+H_2)$,	equati	ng the passive pressure of soil to	the side thrust		
				$1/2*Kp_1W_uH_1^2B_c*Kp_2W_uH_1H_2E$	B _c +1/2*Kp ₂ W _L E	$H_2^2B_C=S.T$	
	Solvin	g this equation for H ₂ with				į	
į			A=	1/2*Kp ₂ W _L B _C	=0.5*1.698*94	0*0.6	478.836
			В=	$Kp_2W_0H_1B_c$	=1 698*1440*(1.5-0.5)*0.6	1467.072
			C=	$1/2*Kp_1W_uH_1^2B_c-S.T$	=0.5*2.464*14	40*(1.5-0.5)^2*0.6-5129	-4064 942
			H₂≃	(-B+sqrt(B ² -4AC))/2A			1.760
İ	Denth	of Effective earth pressure Zone (He) in M		(H2+H1)	=1.76+(1.5-0.5	,	2 760

6	7		STRUCTION N AND DISTRIBUTION IC			
	<u> </u>	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LII	NE PROJECT - 400/220KV AND 132	D	Jocument No	Date
PRO	JECT	KV BARHABISE - KATHMANDU TRANSMISS		O17123-1	F-TL-4M-DC-4001B	19 03 2018
		FOUNDATION DESIGN & DRAWING OF	TOWER TYPE	DESIGNED	CHECKED	Sheet
Tľ	TĻE	"QD/DE" +0M BE_WET SOIL (DEP (132kV D/C BEAR) (WIND ZONE		MDJ	RJR	5 of 18
(d)	Since	Effective Pressure Zone (He) >(2.28- 0.5)Therefore Soil Pr	ressure will only be mobilised in	(2.28 - 0.5)		
(e)	Resisti	ing Soil Force in upper layer Kg (R1)=	0.5*2.464*1440*(1.5-0.5)^2*(0.6		1064.448
` ′	1	ing Soil Force in lower layer Kg (R2) =	1,698*1440*(1.5-0.5)*(2.28-1	.5)*0.6		1144
	Resisti	ing Soil Force in lower layer Kg (R3) =	0.5*1.698*940*(2.28-1.5)^2*(0.6		291
	Total I	Resisting Soil Force in Kg (R)=	1064.448+1144.31616+291.32			2500.088
(t)	C G of	f Resultant force in m	(1064.448*((1.5-0.5)/3+(2.28-1 [1.5)*0.5)+291 3238224*((2.28-		6*((2.28-	0.683
(8)	Mome	nt @ Base Due to Side Thrust (Kg-m)	5129,39*(3-0 05+0.225)-2500.0	09*(0.683+0.67)	12903
	l	ng Pressure due to SideThrust in Kg/m²	(12903.19/ (5.66^3/ 6))			427
		otal Bearing Pressure				
(1)		Bearing Pressure due to Downthrust & hrust in Kg/m²	Pmax = (7261 + 207 + 427)			7895
	Side i	must in Regain	Pmin = (5612 - 1649 - 207 - 42	27)		3329
(j)	Facto	or of Safety against Bearing	(13675*1.25 / 7895.09)			2.17
	(Limit	t bearing pressure is increased by 25% as per IS code.)	Since F.O.S in bearing is >1.0	9, Foundation	is Safe In Bearing	
	•	(3) STRUCTURAL DES	SIGN OF FOUNDATION			
Sr. No.		Description	E	x pression		Value
A)	l	sign Base Slab Reinforcement Fig-5 for base pressure distribution)			- 110	

Sr. No.	Description	Expression	Value
A)	Design Base Slab Reinforcement (Refer Fig-5 for base pressure distribution)		
(a)	Design bearing pressure (Kg/m2)	= $\{(P/A+(0.5*Pe/Z)) + Max. of (Bearing pressure due to S.T (T),S.T (L)\}$)
(b)	Maximum , Pmax in Kg/m²	= (5612 + 824.5465 +427)	6864
(c)	Minimum , Pmin in Kg/m ²	= (5612 - 824.5465 - 427)	4360
(d)	Maximum pressure Pmax in N/mm2	6863.546*9.81/1000000	0.067331
(e)	Minimum pressure Pmin in N/mm2	4360.454*9.81/1000000	0.042776
(f)	Total Depth of At Section X-X in 'm'	(0.1 + 0.2 +0.37)	0.670
(g)	Effective Depth of Slab (dactual) at Section X-X in mm	(670 - (12 + 12 / 2 + 50))	602
(h)	Total Depth of At Section Y-Y tn M	(0.1 + 0.2)	0.300
(i)	Effective Depth of Slab (dactual) in mm	(300 - (12 + 12 / 2 + 50))	232
Ó	Distance from the edge of the footing to Section X-X in 'm'	(5.66-0.6)/2	2 53
(k)	Distance from the edge of the footing to Section Y-Y in 'm'	(5.66-2 52)/2	1 570

2			STRUCTION ON AND DISTRIBUTION IC			
		TAMAKOSHUO KATHMANDII 220/400 KV TRANSMISSION LI	NE PROJECT - 400/220KV AND 132		Jocument No.	Date
PRO	DIECT			O17123-1	T-TL-4M-DC-4001B	19 03 2018
				DESIGNED	CHECKED	Sheet
Τŧ	TLE			MDJ	RJR	6 of 18
(1)	Pressu	re at a distanced=602mmfrom section X-X	(6864-4360)/5.66*(5.66-2.53+0	.602)+4360		6011
(m)	Pressu	re at a distanced=232mmfrom section Y-Y	(6864-4360)/5,66*(5.66-1.57+0	.232)+4360		6272
(n)	The pi	essure at section X-X (Pxx in Kg/m²)	(6864-4360)/5 66*(5.66-2.53)+	4360		5745
(o)	(m) Pressure at a distanced=232mmfrom section Y-Y (n) The pressure at section X-X (Pxx in Kg/m²) (n) The pressure at section Y-Y (Pyy in Kg/m²) (n) The pressure at section Y-Y (Pyy in Kg/m²) (n) Bending Moment at face of chimney at Section X-X in kg-m (n) Bending Moment at face of chimney at Section X-X in kg-m (n) Bending Moment at face of chimney at Section X-X in N-mm (n) Bending Moment at face of chimney at Section X-X in N-mm (n) No and Diameter of Bars to be used in Base Slab MKD "K" Value of Xumax /d to be used in slab design Effective Depth Required for slab (Dreqd) in mm Breadth at section -XX in M = 2.52 Moment of Resistance at Section - XX Mrx in N-mm Total Reinforcement Ast required in mm2 where Ast = Reinforcement Reqd. for moment Mrx Minimum steel area required , mm2/m		(6864-4360)/5.66*(5.66-1.57)+	4360		6169
(p)	Pressure at a distanced=232mmfrom section Y-Y (6) The pressure at section X-X (Pxx in Kg/m²) (6) The pressure at section Y-Y (Pyy in Kg/m²) (7) Bending Moment at face of chimney at Section X-X in kg-m No and Diameter of Bars to be used in Base Slab MKD *K** Value of Xumax /d to be used in slab design Effective Depth Required for slab (Dreqd) in mm		5745*5.66*(5.66-0.6)^2/8+(686	117574		
(q)	Bendi	ng Moment at face of chimney at Section X-X in N-mm	(117574.072*9.8)*1000)			1.1534E±09
	No an	No and Diameter of Bars to be used in Base Slab No of Bars required for base slab Diameter of Bar in or		erofBarin mm	Area of Bars (Ast) in mm ²	
		MKD "K"	44		12	4976.28
	Value	of Xumax/d to be used in slab design	Fy = 500 (Xumax / d) = 0.46	& For Fy = 41:	5 (Xumax/d) = 0.48	
	Effect	ive Depth Required for slab (Dreqd) in mm	Sqrt (1.153E+09/ (0.36 * 20 *)	0.46*(1-(0.42*0	0.46)) * 2.52 * 1000)	414
	Bread	Ith at section -XX in M = 2.52	Since (dreqd) < than (dactual), Slab depth is	6 O.K	
	Mome	nt of Resistance at Section - XX Mrx in N-mm	(Mrx =0.87 *500 * Ast *602 *	[1-(Ast *500 / 2	0 * 2520*602]	
	Total !	Reinforcement Ast required in mm2	= 4.315 Ast^2 - 261870 Ast +	1 153E+09 = 0	•	
	where	Ast = Reinforcement Reqd. for moment Mrx	Solving the above Quadratic eq	uation for Ast	We Get Ast =	4781.20
	Minin	num steel area required , mm2/m	0.12/100 x 2520 x 670			2026.1
	Bendi	ng Moment at Section - YY (Refer Fig -5)				
	Bendi	ng Moment at junction of slabs at Section Y-Y in kg-m	6169*5.66*(1.57)^2/2+(6864-6	169)*5.66*1.57	//2*2/3*1.57	46263
	Bendi	ng Moment at junction of slabs at Section Y-Y in N-mm	(46263.364*9.81*1000)			4.5384E+08
	Effect	ive Depth Required for slab (Dreqd) in mm	Sqrt (4.538E+08/ (0.36 * 20 *)	0.46*(1-(0.42*0	0.46)) * 5 66 * 1000)	173
]_	total and the SVEC to Billion of the	8:	s Clab Janet to	. Α.Ι′	

Since (dreqd) < than (dactual), Slab depth is O.K.

= $1.921 \text{ Ast}^2 - 100920 \text{ Ast} + 4.538E + 08 = 0$

0.12/100 x 5660 x 300

129

(Mry =0.87 *500 * Ast *232 * [1-(Ast *500 / 20 * 5660*232]

Solving the above Quadratic equation for Ast We Get Ast =

(Ast = Maximum of (4781.2, 2026.08, 4966.71, 2037.6))

 $(49667) / (Pi / 4 * 12 ^ 2))$ (No of bars required = 43.915

(Let us Provide 44 Nos of 12mm diameter rod as slab reinforcement.)

Breadth at section -YY in M = 5.66

Total Reinforcement Ast required in mm2

Minimum steel area required, mm2

Total No of bars required for slab

Hence the speacing between rod is (mm)

Reinforcement

Moment of Resistance at Section - YY Mry in N-mm

where Ast = Reinforcement Reqd. for moment Mry

Maximum of the above area of steel is provided as Slab

4966.71

2037.60

4966 71

O.K.

44

6	\widehat{Z}		T CONSTRUCTION MISSION AND DISTRIBUTION IC				
PRO	JECT	TAMAKOSHI 16 KATHMANDU 230/400 KV TRANSMISS KV BARHABISE - KATHMANDU TRA			ent No 4M-DC-4001B	Date 19 03,2018	
		FOUNDATION DESIGN & DRAWT	NG OF TOWER TYPE	DESIGNED	CHECKED	Sheet	
Tr	TLE	"QD/DE" +0M BE WET SOI (132kV D/C BEAR) (WIN)	IL (ÐEPTH=3M)	MDJ	RJR	7 of 18	
Šr.		Description	1	pression		Value	
<u>10</u> В)	Checl	for One Way Shear At Section - XX :- (Due to	Downthrust) (Refer Fig -3)	·			
(a)	At Sec	etion - XX					
	Pmax	in kg/m2	6863.546			6864	
	Pmin i	n kg/m2	6010.903			6011	
(b)	Total S	Shear force at Section - XX/m run in N	(0.5*(6864+6011)*((5 66-0.6)/2	-0.602))*9.81		121752	
(c)	Effecti	ve Area of Cross Section per m run in mm²	602*1000			602000	
(d)	Nomin	al Shear Stress Tv in N/mm²/m	(121751.607 / 602000)			0.202	
(e)	Total I	Effective Area of Cross Section in mm ²	((2520*370)+0.5*(5260+5660)*	200+5660*(100-50	1-6))	2273440	
(f)	Percen	tage Slab reinforcement (p)	p = (100 * 4966.71)/2273440			0.219	
(g)	Permis	sible Shear Stress To in N/mm²	(Refer clause no 4.10 of Sp-16-	1980 Design Aids t	for IS 456		
(h)	Permis	sible Shear Stress To in N/mm²	[0.85 x { Sqrt (0.8 x Fck) }x{{	sqrt(1+5 Ct)}-1}]/(6	6xCt)		
(i)	Where	Coefficient Ct is given by	$Ct = (0.8 \times 20 / (6.89 \times 0.219))$)		10 604	
(i)		sible Shear Stress Tc in N/mm²	(((0.85*((0 8 * 20)^0.5*(((1+5	* 10.604)^0.5-1})	/(6*10.604)))	0 339	
•			(Since Tc > than Tv Shear Re				
C)	Chec	k for One Way Shear At Section - YY : - (Due to				t	
(a)	At Sec	etion - YY		····			
•	Pmax	in kg/m2	6863.546			6864	
	Pmin i	n kg/m2	6271.826			6272	
(b)	Total S	Shear force at Section - YY/m run in N	(0.5*(6864+6272)*((5.66-2.52)/	2-0.232))*9.81		86206	
(c)	Effecti	ve Area of Cross Section per m run in mm ²	232*1000			232000	
(d)	Nomir	al Shear Stress Tv in N/mm²/m	(86206.004 / 232000)			0.372	
(e)	Total I	Effective Area of Cross Section in mm ²	((0 5*(5260+5660)*200+5660*(100-50-6))		1341040	
(t)	Регсеп	tage Slab reinforcement (p)	p = (100 * 4966.71)/1341040			0.371	
(g)	Where	Coefficient Ct is given by	$Ct = (0.8 \times 20 / (6.89 \times 0.37))$	1)		6.259	
(h)	Permis	sible Shear Stress Te in N/mm²	(((0.85*((0.8 * 20)^0.5*(((1+5*	(((0.85*((0.8 * 20)^0.5*(((1+5* 6.259)^0.5-1))/(6 *6.259)))			
			(Since To > than Tv Shear Rei	inforcement is not	required)		
D)	Chec	k for Two Way Shear At Section - XX : - (Due to			-		
(a)	Pressu	re at Section XX in N/mm2	6863 546*9 81/1000000			0.0673314	
		At Section - XX in N	((0.067*[5660^2-(600+602)^2])			2059721	
		ve Area of Cross Section in mm ²	(600 + 602)*4 *602			2894416	
•-,		ial Shear Stress Tv in N/mm²	(2059721/2894416)			0.712	
(u)		able Shear Stress (Temax) in N/mm ²		6 200 0 3		0.712	
	Allow		(As per Clause 31 6 3.1 of IS 45)				
		Temax = Ks * Te	Where $(Ks = 0.5 + B^{1}) Not > 1$	ic = 0.25 *Sqrt(Fck	()		

6	\widehat{Z}		CONSTRUCTION ISSION AND DISTRIBUTION IC				
		TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSIO	ON LINE PROJECT - 400/220KV AND 132	· ·	cument No	Date	:
PRO	MECT	KV BARHABISE - KATHMANDU TRANS		O17123-T-	TL-4M-DC-4001B	19 03 20	318
		FOUNDATION DESIGN & DRAWING		DESIGNED	CHECKED	She	et
TI	TĻĒ	"QD/DE" +0M BE WET SOIL (132kV D/C BÉAR) (WIND:		MDJ	RJR	8 of 18	
(e)	Allowa	able Shear Stress in concrete (Temax) in N/mm ²	Min of (0.5 + (0.6 / 0.6),L)	*(0.25 * SQR	T (20))	1.11	8
Sr.	<u>-</u>		(Since Temax > than Tv Shea	r Reinforcemen	t is not required)	 -	
No.		Description	E	xpression		Valu	le
E)	Chec	k for Two Way Shear At Section - YY: - (Due to	Downthrust) (Refer Fig -3)				
(a)	Pressu	re at Section YY in N/mm2	6863.546*9.81/1000000			0.067331	4
(b)	Shear .	At Section - YY in N	((0.067*[5660^2-(2520+232)^2	:D		16470	67
(c)	Effecti	ive Area of Cross Section in mm2	(2520 + 232)*4 *232	(2520 + 232)*4 *232			6
(d)	Nomin	nal Shear Stress Tv in N/mm²	(1647067 / 2553856)			0 64	5
(e)	Allowa	able Shear Stress in concrete (Temax) in N/mm ²	Min of (0.5 + (0.6 / 0.6),1)	Min of (0.5 + (0.6 / 0.6),1) * (0.25 * SQRT (20))			8
	ļ		(Since Temax > than Tv Shea	r Reinforcemen	t is not required)		
F)	Design	n of Slab for Uplift Reinforcement at Section - YY	; -				
(a)	Bearin	g Pressure due to Uplift in Kg/m ²	(161529.69) / (5.66 ^2 - 0.6	^2)}		509	19
(b)	Bendir	ng Moment/m width @ - YY (Mux) in N-mm	(5099.499 * (5.66 - 2.52)^2	/8 * 5.66) * 9.8	t* 1000)	3.490E+0	8
(c)	Mome	nt of Resistance at Section - YY Muy in N-mm	(Muy =0.87 *500*Astuy *232 *	[1-(Astuy *500	/ 20 * 5660*232)]		
(d)	Uplift	Reinforcement @ - YY (Astuy in mm2)	= 1.921 Astuy^2 - 100920 As	tuy + 3.490E+08	= 0		
(e)	Astuy	= Reinforcement for Uplift @ - YY /M-width	Solving the above Quadratic equ	uation for Astuy	We Get Astuy =	3721.5	2
		ium steel area required , mm2	0.12/100 x 5660 x 300			2037.	<u>6</u>
(f)	No and	d Diameter of Bars to be used in Base Slab	Diameter of Bar in mm N	lo of Bars require	ed for Uplift force @ Y	<u>(Y</u>	
		At Section - YY for Uplift Reinforcement	12	(3721.521 / (Pr.	/4 *12^2)) =	33.00	0
		(Let us Provide 33 Nos of 12mm (diameter rod as Uplift Reinforceme	nt at Section - Y	Y MKD, 'M')		
	Hence	the speacing between rod is (mm)	161			О.К.	
G)	Design	n of Slab for Uplift Reinforcement at Section - XX	;-				
	section compr	y be noted that reinforcement provided at section \ n at section X-X. This is because under uplift, compression flange) and sectionbehaves as a highly unden and using stress and strains of concrete and steel	pression occurs at the face of the ba er reinforced section. From the equi	se slab having n Ribrium of inter	iore width (more are nal and external forc	a of es on the sla	-

 $Xu/d_1 = (p_3/100)x(d_2/d_1)x(fs/0.36f_{ck}) + (p_3/100)x(0.87f_3/0.36f_{ck})$

where:- $p_3 = (100 \text{ A}_{s3} / \text{ Bd}_2)$ and $p_4 = (100 \text{ A}_{s4} / \text{ B}_{d4})$; fs= Design yield stress of steel at d₂ from MCE calculated for strain in steel at that level(arrived through interpolation from strain diagram)

 ${f A}_{s3}$ = ${f A}$ rea of reinforcement at the top of -bottom-most step, ${f A}_{s4}$ = ${f A}$ rea of reinforcement at the top of the topmost step

Moment of resistance of slab section at the face of the chimney:

 $\left| M_{u} = \left| 0.87 f_{y} * (p_{2}/100) * (d_{2}/d_{1}) * (d_{2}/d_{1} - 0.416 \times u/d_{1}) + (0.87 f_{y}) * (p_{2}/100) * (1-0.416 \times u/d_{1}) \right| * Bd_{x}^{2}$

Substituting the value of Xu/d1 in the above equation, we get the second order degree equation which can be resolve as follows:-

 $A = 0.416* (0.87*f_y)^2/(0.36*f_{ck})$

 $B = 0.416*((0.87*f_s)/(0.36*f_{ck}))*((fs*(p_3/100)*(d_2/d_1)) + ((0.416*fs*(p_3/100)*(d_2/d_1))*((0.87*f_s)/(0.36*f_{ck})) + 0.87*f_s$

 $C = (M_{m}/B^{*}d_{1}^{*}d_{1}) - (fs^{*}(p_{3}/100)^{*}(d_{2}/d_{1})^{2}) + (0.416^{*}(p_{3}/100)^{*}(d_{3}/d_{1}))^{*}((fs)/(0.36^{*}f_{ck}))^{*}((fs^{*}(p_{3}/100)^{*}(d_{2}/d_{1})))^{2} + (0.416^{*}(p_{3}/100)^{*}(d_{3}/d_{1}))^{*}((fs)/(0.36^{*}f_{ck}))^{*}((fs^{*}(p_{3}/100)^{*}(d_{2}/d_{1})))^{*}((fs)/(0.36^{*}f_{ck}))^{*}((fs^{*}(p_{3}/100)^{*}(d_{2}/d_{1})))^{*}((fs)/(0.36^{*}f_{ck}))^$

(7	•	CONSTRUCTION SSION AND DISTRIBUTION IC	•		· · · · ·	
PRO	DJECT	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSIO KV BARHABISE - KATHMANDU TRANS			cument No TL-4M-DC-4001B	Date 19.03.2018	
		FOUNDATION DESIGN & DRAWING			DESIGNED CHECKED		
Γ!	TLE	"QD/DE" +0M BE WET SOIL ((132kV D/C BEAR) (WIND Z		MDJ	RJR	9 of 18	
(a)	Bearin	g Pressure due to Uplift in Kg/m²	(161529.69) / (5.66 ^2 - 0.64	^2);		5099	
(b)	Bendir	ng Moment @ - XX (Mux) in N-mm	(5099.499 * (5.66 - 0.6)^2/	8 * 5.66) * 9.81*	* 1000)	9.062E+08	
(c)	Strain	in reinforcement at d ₂ from Bottom of slab-I (By linea	r interpolation from Strain Diagram)			-5.422E-04	
(d)	Design	yield stress of reinforcement at d ₂ from Bottom of sla	b-1 (fs in N/mm2) [Refer Fig.3 of SP-	·16]		0	
	A = 0	416* (0 87*f _y)^2/(0.36*f _{sk})	A=((0.416*(0.87*500)^2/(0.36*	20))		10933	
	$\mathbf{B} = 0.4$	416*((0.87*f ₃)/(0.36*f _{ck})) *((fs*(p ₃ /100)*(d ₂ /d ₁))	B=0.416*((0.87*500)/(0.36*20)				
	+ ((0.4	$(16*fs*(p_3/100)*(d_2/d_1))*((0.87*f_y)/(0.36*f_{ck}))$	+((0.416*0*0.0028*(232/602))*((0.87*500)/(0.36*20))			-435.000	
	- 0.87*	٠٤,	-0.87*500				
	C≃ (M	$a_{sy}/B^*d_1^*d_1) - (fs^*(p_3/100)^*(d_2/d_1)^2)$	C=(906199871.4/5660*602*602				
	+ (0.41	16*(p ₃ /100)*(d ₂ /d ₁)) * ((fs)/(0.36*f _{ck}))	+(0.416*0.0028*(232/602))*((0	0.44179			
	((fs($p_3/100)*(d_2/d_1))$	*((0*0.0028*(232/602))				
	Theref	ore by resolving the above equation, we get,					
	p\$4/10	o	$ps4/100 = (-b - SQRT(b^2-4ac))$	/2*a			
			ps4/100=435-SQRT(189225-4*	10933*0 442))/(2	2*10933))	0.001043	
			Therfore, ps4 =			0.10	
	Theref	ore reinforcement Ast4 in mm2	Ast4=((0.104*5660*602)/100)			1582.19	
	Minim	um steel area required , mm2	0.12/100 x 2520 x 670			2026.08	
(c)	No and	Diameter of Bars to be used in Base Stab	Diameter of Bar in mm N	o of Bars require	d for Uplift force @	XX	
17/		At Section - XX for Uplift Reinforcement	12	(1582.189 / (Pi /	4 *12^2)) =	18.000	
		(Let us Provide 18 Nos of 12mm d		nt at Section - X	X, MKD 'N')	1	
	Hence	the speacing between rod is (mm)	142			O.K.	

6	7		CONSTRUCTION ISSION AND DISTRIBUTION (C				
	TANIAL OCHI (VATIMANIBILI 220/07/1/V TE ANGMICOION) I		ONLY INC. DO TO		Jocument No	Date	
PRO	DJECT	TAMAKOSHI 10 KATHMANDU 220/400 KV TRANSMISSI KV BARHABISE - KATHMANDU TRAN:		1 A12122 T.T. JM DC JAA1B			
		FOUNDATION DESIGN & DRAWING		DESIGNED	CHECKED	Sheet	
TI	TLE	"QD/DE" +0M BE WET SOIL (132kV D/C BEAR) (WIND	· ·	MDJ	RJR.	10 of 18	
		(4) CHEC	K FOR SLIDING (Refer Figure -	4)	-		
r. No		Description	E	xpression		Value	
(a)	Coeffic	cient of Passive Earth Pressure in Lower layer	(1+ Sin (15)) / (1- Sin (15))			1.698	
(b)	Coeffic	cient of Passive Earth Pressure in Upper layer	(1+ Sin (25)) / (1- Sin (25))			2.464	
(c)	Facial	Area in upper layer of Chimney in m ²	A1 = (0.6 * (1.5 - 0.5))			0.600	
(d)	Facial	Area in lower layer of Chimney in m ²	A1 = (0.6 * (2.28 - 1.5))			0 468	
(e)	Facial	Area in Portion of Slab- III in m2	A2 = (0.37 * 2.52)			0.932	
(f)	Facial	Area in Portion of Slab- II in m2	A3 = (0.2 * (5.66 + 5.26 / 2)))		1 092	
(g)	Facial	Area in Portion of Slab- 1 in m ²	A4 = (0.1 * 5.66)			0.566	
(h)	Earth I	Pressures in Upper Layer in Kg/m ²	(Plu = (2.464 * 1440 * (1.5-	(Plu = (2.464 * 1440 * (1.5-0.5)))			
(i)	Earth E	Pressures in Lower Layer 1 in Kg/m ²	(Ptf = (1.698 * 1440 * (1.5-0	(Ptf = (1.698 * 1440 * (1.5-0.5)))			
(j)	Earth Pressures in Lower Layer 2 in Kg/m ² (P2 = $(2445.12 + (1.698 * 940 * (1.35 - 0.2 - 0.37))$			3690			
(k)	Earth Pressures in Lower Layer 3 in Kg/m ² (P3 = (3690.0936 + (1.698 * 940 * 0.37))				4281		
(1)	Earth F	Pressures in Lower Layer 4 in Kg/m ²	(P4 = (4280.658 + (1.698 *	940 * 0.2))		4600	
(m)	Earth F	ssures in Lower Layer 5 in Kg/m ² (P5 = $(4599.882 + (1.698 * 940 * 0.1))$			4759		
(n)	Lateral	Force in Lower Layer - I in Kg	(F1 = 0.6 / 2 * (3548.16))			1064	
(0)	Lateral	Force in Lower Layer -2 in Kg	(F2 = 0.468 /2 * (2445.12+	-3690.0936))		1436	
(p)	Lateral	Force in Lower Layer -3 in Kg	(F3 = 0.9324 / 2 * (3690.09)	36+4280.658))	3716	
(q)	Lateral	Force in Lower Layer -4 in Kg	(F4 = 1 092 /2 * (4280.658	(+4599 882))		4849	
(r)	Lateral	Force in Lower Layer -5 in Kg	(F5 = 0 566 /2 * (4599 882	(+4759,494))		2649	
			Total Lateral Force in Kg			13714	
	Factor	of Safety Against Sliding : -					
	ŀ		(13713 531 / 5129.39)			2.67	
	<u> </u>		Since F.O.S >1.00 foundation	is Safe agains	t sliding		
		(5) (CHECK FOR OVERTURNING	<u>.</u>			
r, No		Description	E	xpression		Value	
(a)	Maxim	num Transverse Side Thrust in Kg	(3034.34)		3034	
(b)	Maxim	ium Longidutinal Side Thrust in Kg	(5129 39)		5129	
(c)	Resulta	ant Side Thrust (R) in Kg		34^2 + 5129.3	- / /	5960	
		Overturning Moment in Kg-m	(161529.69 * Cos (17.56) * (3 + 0.225 - 0.05) -	18008.993 * (5.	66/2-5.66/6)	275497	
	l	Resisting Moment in Kg-m		68.06 * 5/6 *		341411	
(f)	Factor	of Safety Against Overturning	·	342 / 275496.71	·	1.24	
			Since F.O.S >1.00 foundation	is Safe agains	t Overturning	1	

\bigcirc	L&T CONSTRUCTION POWER TRANSMISSION AND DISTR	ABUTION IC		
	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU	Document	No	Date
PROJECT	TRANSMISSION LINE (TKTL)	O17123-T-TL-4M-	19.03.2018	
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE "QD/DE" +0M BE WET SOIL (DEPTH=3M)	DESIGNED	СНЕСКЕВ	Sheet
iiile.	(132kV D/C BEAR) (WIND ZONE - 4)	MDJ	RJR	11 of 18

3.0 DESIGN OF CHIMNEY (Chimney Design with Stub contribution)

3.1 Loading: Compression with biaxial bending

(174326.14+0.6^2*(0.225+2.28)*2400)*9.81/1000 Puc=

1731.37 KN Puc=

(3034.34*(2.28+0.225)-2500.088*(2.28-0.5)/3)*9.81/1000 Mux≖

Mux≖ 60.01 KN-m

(5129.39*(2.28+0.225)-2500.088*(2.28-0.5)/3)*9.81/1000 Muy=

Muy= 111.50 KN-m

Material Property:

500 N/mm² fy≖ 250 N/mm² fys= 20 N/mm² fck=

Geometric Property: 600 mm Clear cover 50 mm

Dia of reinf 20 mm and 25 mm No. of reinf= 4 nos. and 4 nos.

ď' = 62.5 mm

TRIAL-I Say Neutral Axis at a distance from MCE = Xu = 326.158 mm

MCE: Most Compressed Edge of concrete

Location	Distance from MCE	Strain	Stress (f _{si}	l		1	Distance from CG	Moment
•	mm		N/mm ²	mm²	KN	mm	mm	KN-m
MCE	0.0	0.00350	-	-	-	326.158	300	-
R1	62.5	0.00283	402.84	1295.91	522.04	263.658	237.5	123.99
R2	300.0	0.00028	47.22	628.32	29.67	26.158	0	0.00
Stub	300.0	0.00028	47.22	5810.00	274.35	26.158	0	0.00
R3	537.5	0.00227	388.68	1295.91	-503.69	-211.342	-237.5	119.63
		Total		9030.13	322.37			243.61

Concrete force incompression, F = 0.36*fck*xu*d Concrete force incompression,F = 1409.00 KN

Total axial Capacity = Concrete force in compression + Summation of all internal forces induced by the rebar & the stub 1731.37 KN

1731.37 KN

≥

Total axial capacity = 1409.00 322.37 + Moment due to compression force in concrete = F*(C.G - 0.416Xu)

= 231.5244 kN-m

Total Moment capacity = Moment due to compression force in concrete + Moment due to rebar & the stub

Total Moment capacity = 475.14 kN-m

Puz= 5455.653484 Pu/Puz= 0.317354

Interaction formula = 0.261 OΚ

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC							
	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU	Document	No	Date			
PROJECT	TRANSMISSION LINE (TKTL)	O17123-T-TL-4M-DC-4001B		19.03.2018			
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE "OD/DE" +0M BE WET SOIL (DEPTH=3M)	DESIGNED	CHECKED	Sheet			
HILE	(132kV D/C BEAR) (WIND ZONE - 4)	MDJ	RJR	12 of 18			

3.2 Loading:Tension with biaxial bending

Put=

1585 KN

Mux=

38.51 KN-m

Muy=

86.63 KN-m

Material Property:

fy≂

500 N/mm2

fys≔

250 N/mm2

fck≖

20 N/mm2

Geometric Property:

D≃ clear cover 600 mm

Dia of reinf No. of reinf= 50 mm 20 mm

and and 25 mm 4 nos

4 nos. 62.5 mm

TRIAL-I

Say Neutral Axis at a distance from MCE = Xu =

192.938 mm

Location	Distance from MCE	Strain	Stress (f _{si}	Area	1	Distance from NA		Moment
	mm		N/mm2	mm2	KN	mm	mm	KN-m
MCE	0	0.00350	-	-	-	192.938	300	-
R1	62.5	0.00237	385.18	1295.91	499.16	130.438	237.5	118.55
R2	300	0.00194	365.55	628.32	-229.68	-107.062	0	0.00
Stub	300	0.00194	365.55	5810.00	-2123.85	-107.062	0	0.00
R3	537.5	0.00625	435.00	1295.91	-563.72	-344.562	-237.5	133.88
		Total		9030.13	-2418.10	· · · · · · · · · · · · · · · · · · ·		252.43

Concrete force incompression, F =

0.36*fck*xu*d

Concrete force incompression,F =

833.49 KN

Total axial Capacity = Concrete force in compression + Summation of all internal forces induced by the rebar & the stub

Total axial capacity = 833.49

-2418.10 =

1584.61 KN

1584.61 KN

Moment due to tension force in concrete = F*(C.G - 0.416Xu)

= 183.1492 kN-m

Total Moment capacity = Moment due to compression force in concrete + Moment due to rebar & the stub

Total Moment capacity =

435.58 kN-m

Pu/Puz=

Interaction formula =

0.287

OΚ

Design of Lateral ties

(iii) 300mm

Minimum Diameter of Lateral Ties in mm =1/4 of largest dia. of Longitudinal bar

0.25*25

6.25 mm

Hence provide lateral ties of dia

8 mm

As per Clause 26.5.3.2 of IS 456 - 2000 Pitch of lateral Ties shall be least of the following

(i) Least lateral dimension of compression member

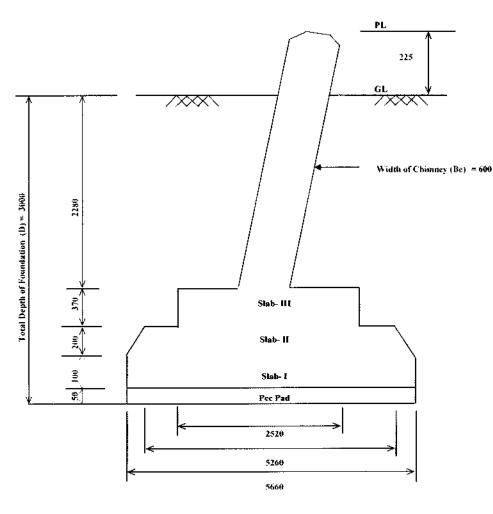
0.611000

600 mm

300 mm

(ii) 16 times smallest diameter of longitudinal bars

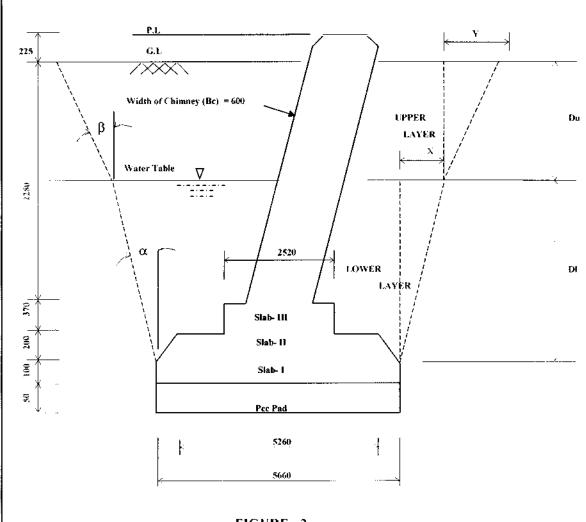
16*20 300


= 320 mm

So, provide the lateral ties at a distance of

300 mm c/c

	TAMAKOSHI 10 KATHMANDU 220/400 KV	Docume	Date	
PROJECT	TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-T-TL-4	M-DC-4001B	19.03.2018
THE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	СНЕСКЕВ	Sheet
TITLE	"QD/DE" +0M BE WET SOIL (DEPTH=3M) (132kV D/C BEAR) (WIND ZONE - 4)	MDJ	RJR	13 of 18


FIGURE - 1

Note:

All Dimensions are in Millimeters

	TAMAKOSHI to KATHMANDU 220/400 KV	Docume	Date	
PROJECT	TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-T-TI 4001		19.03.2018
mental P	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet
TITLE	"QD/DE" +0M BE WET SOIL (DEPTH=3M) (132kV D/C BEAR) (WIND ZONE - 4)	MDJ	ŔJR	I4 of 18


FIGURE - 2

Note:

All dimensions are in Millimetres

	TAMAKOSHI to KATHMANDU 220/400 KV	Documen	Date	
PROJECT	TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	017123-T-TL-4M	-DC-4001B	19.03.2018
	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	СНЕСКЕВ	Sheet
TITLE	"QD/DE" +0M BE WET SOIL (DEPTH=3M) (132kV D/C BEAR) (WIND ZONE - 4)	MDJ	RJR	15 of 18

SECTION A-A

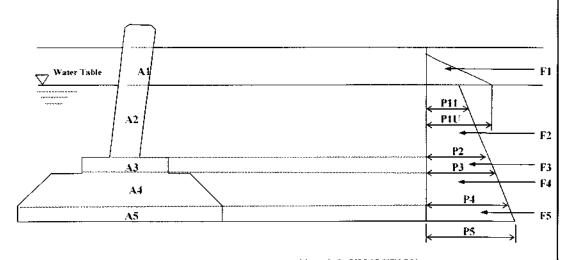
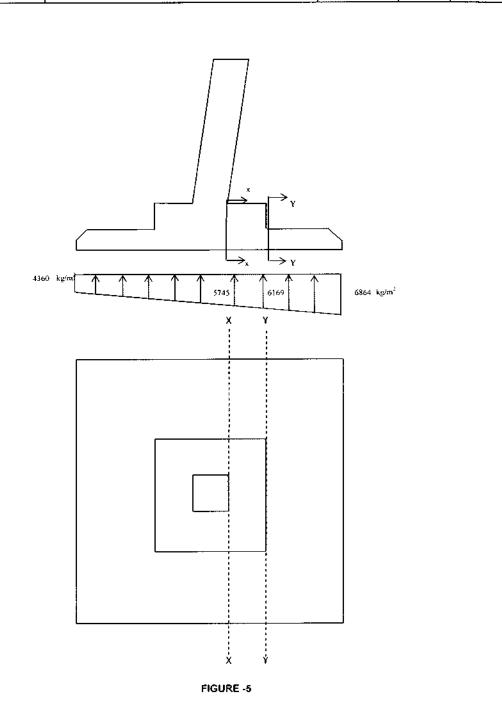

Note:

FIGURE - 3

All Dimensions are in Millimeters

	TAMAKOSHI to KATHMANDU 220/400 KV	Documer	Date	
PROJECT	TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV	017123-T-TL 4001 E		19.03.2018
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE "OD/DE" +0M BE WET SOIL (DEPTH≃3M)	DESIGNED	CHECKED	Sheet
IIILE	(132kV D/C BEAR) (WIND ZONE - 4)	MDJ	RJR	16 of 18



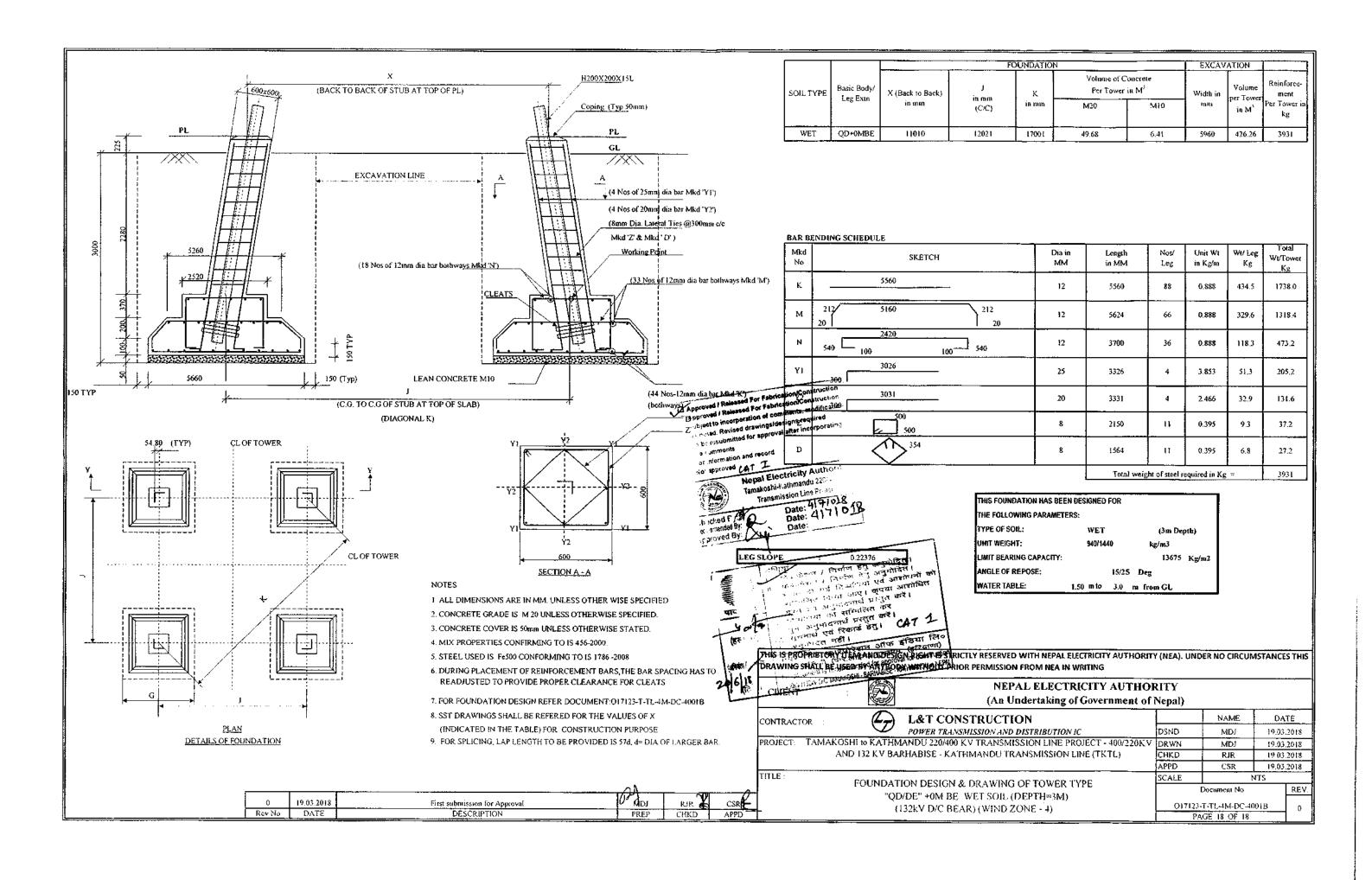

EARTH PRESSURE DISTRIBUTION

FIGURE - 4

	TAMAKOSHI 10 KATHMANDU 220/400 KV	Documen	Date	
PROJECT	TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-T-TL-4M	19.03.2018	
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE "OD/DE" +0M BE WET SOIL (DEPTH=3M)	DESIGNED	CHECKED	Sheet
LIELE	(132kV D/C BEAR) (WIND ZONE - 4)	MDJ	RJR	17 of 18

L&T Construction

Power Transmission & Distribution

CLIENT:

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

ONSULTANT

POWER GRID CORPORATION OF INDIA LTD

TAMAKOSHI – KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT -400/220 KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE

LOA No.: 073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4M-GA-0401B

BOM No.: BOM/LE17D124/132kV/QD/001B

ा / निर्माण हेतु अनुहोदित । गई टिप्पणियो एवं आशोधनों को त किया जाए। कृपया आशोधित अनुमोदनार्ध प्रस्तुत करें। को सम्मिलित कर

CAT-T

नोदनार्थ प्रस्तुत करें। रिकार्ड हेतु।

कारपोरेशन ऑफ इंडिया लिव (पारे.लाईन) गुरुग्राम, (हरियाणा)

ent is recommended for approval for construction OLV /132XV EVC TAMAKOSHI - BARHABISE - KATHMANOU ir NEPA

NO OF SHEETS:

2

CATI

pproved / Released For Fabrication/Construction ved / Released For Fabrication/Construction ject to incorporation of oc aments, modification eted. Revised drawings/designs required be resubmitted for approval after incorporating

BILL OF MATERIAL

2M STUB EXTENDER FOR TOWER TYPE - "QD/DE" (132kV, WZ-4) ☐ Not approved

Nepal Electricity Authorit (FOR +0M EXTN.) ONE CORNER ONLY Tamakoshi-Kathmandu 220/400 Transmission Line Project

approved By:

Date:

Checked By: Date: 17 7 2019

WEIGHT OF STRUCTURE				
HT MEMBERS: BOM/LE17D124/QD2RC	128.407			
MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ETC.	-			
WEIGHT OF BOLTS & NUTS, SPRING WASHERS: BOM/LE17D124/QD2RB	5.536			
TOTAL WEIGHT OF STRUCTURE:	133.943 Kgs			

THIS STUB EXTENDER SHALL COMPLETE WITH EXISTING STANDARD STUB OF QD TYPE TOWER FOR 3M DEPTH FOUNDATION

AL	.EX	KMK	BSR	CSF		20	05.19
PREPARED BY		CHECKED BY	REVIEWED BY	APPROVE	D BY	D	ATE
REV.	DATE	ATE DESCRIPTION CH	CHKD.	REVED.	APPD.		
0	29.05.19	FIRST SI	FIRST SUBMISSION FOR APPROVAL			BŠŔ	ĊŠR

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

LARSEN & TOUBRO LIMITED, CONSTRUCTION., 979, Mount-Poonamallee Road, Manapakkam, Tamiinadu-600089, PHONE: 044-22526000, FAX: 044-22526059

Date:

29-May-2019

Page: 1 of 1

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No:

BOM/LE17D124/QD2RC

Order Ref:

REF/LE17D124

il.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
	BOM OF 2M S ONE CORNER	TUB EXTENDER (FOR +0)	M EXTN.) FOR TOW	ER TYPE-"	QD/D	E" (132kV	WZ-4)	
1	N1MQD2E1H	L200X200X15H-E350A	2088.00	45.600	1	95,213	95.213	
2	N1MQD2E2H	L150X150X12H-E350A	606,00	27.300	1	16.544	16.544	
3	N1MQD2E3H	10MM PLATE H-E350A	175.00 X 606.00	78.500	2	8.325	16.650	
		•		Total We	ight ;		128.407	

Associated Parts

Part Code	Type of Association	Associated with	Total Weight

No Association Part

Raw Material Involved	Standard Material	Total Weight (In Kg)
BOM OF 2M STUB EXTENDER (FOR +0M EXT TYPE-"QD/DE" (132kV WZ-4) ONE CORNEI	TN.) FOR TOWER R	
10MM PLATE H-E350A	нт	16.650
L150X150X12H-E350A	нт	16.544
L200X200X15H-E350A	нт	95.213
	Total	128.407
	нт	128,407

^{** --} Item Welded with another item
*** -- Item Assembled with another item

LARSEN & TOUBRO LIMITED, CONSTRUCTION., 979, Mount-Poonamailee Road, Manapakkam, Tamilnadu-600089,PHONE: 044-22526000,FAX: 044-22526059

Date:

29-May-2019

Page: 1 of 1

BILL OF MATERIAL

Order No:

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No :

BOM/LE17D124/QD2RB

Order Ref:

REF/LE17D124

5l.No.	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
	BOLTS & NU WZ-4) ONE	TS OF 2M STUB EXTENDE CORNER	R (FOR +OM EXT	.) FOR TOW	ER TY	PE-"QD/DE'	′ (132kV	
1	QD2RB1	M16x65MM LONG (IS:12427)		0.164	32	0.164	5.248	
2	QD2RB2	M16x3.5MM SPRING WASHER IS3063		0.009	32	0.009	0.288	
				Total We	ight:		5.536	·
Assoc	iated Parts			·				
Part Co	ode	Type of Association	Associated	with T	intal Ma	oloht.		

Associated with Total Weight

No Association Part

Raw Material Involved	Standard Material	Total Weight (In Kg)
BOLTS & NUTS OF 2M STUB EXTENDER (FOR +0M EXTN.) FOR TOWER TYPE-"QD/DE" (132kV WZ-4) ONE CORNER	Ł	
M16x3.5MM SPRING WASHER IS3063		0.288
M16x65MM LONG (IS:12427)		5.248
т	otal	5,536

^{** --} Item Welded with another item *** -- Item Assembled with another item

CLIENT:

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

CONSULTANT:

POWER GRID CORPORATION OF INDIA LTD

PROJECT:

TAMAKOSHI - KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT -400/220 KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE

LOA No. :

073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4M-GA-0403

BOM No. :

BOM/LE17D124/132kV/QD/003

केबाक्यान / क्षित्राण हेतु अनुमोदित। फेब्रीकेशन / क्षित्राण हेतु अनुमोदित। समर्थे की गई टिप्पणियी एवं आशीध लेत किया जाए। कृपया आशोधित ज अनुमोदनार्थ प्रस्तुत करें। स्में को सम्बक्ति करे

NO OF

SHEETS:

8

भनुनोदनार्थं प्रश्तुत करे। ह्ये एवं रिकार्ड हेतु। अनियांत्रिकी (यारे.सार्यन) गुरुधान, (बांदेवाला) NATIONAL DE TAMANDOSHI - BARRORISE - KATURUS - DI A SERVI

BILL OF MATERIAL

15/02/10

CAT I +0M BODY EXTN FOR TOWER TYPE - "QD/DE" (132kV, WZ-4) Approved / Released For Fabrication/Construction

- Approved / Released For Fabrication/Construction subject to incorporation of comments, modification as noted. Revised drawings/designs required ☐ To be resubmitted for approval after incorporating the comments
- For information and record
- ☐ Not approved

Checked By:

Nepal Electricity Authority Tamakoshi-

Transmi

sion Line Project	WEIGHT OF STRUCTURE	
##F MEMBERS: BOM/LE17D124/PQD0E/SQD0H/R-0 MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ETC. BOM/LE17D124/PQD0E/SQD0M/R-0 = 748.080 BOM/LE17D124/PQD0B/SQD0W/R-0 = 0.776 WEIGHT OF BOLTS & NUTS,SPRING WASHERS: BOM/LE17D124/PQD0B/SQD0B/R-0 95.474 /2	1829.104	
ACCESSORIES ETC. BOM/LE17D124/PQD	0E/SQD0M/R-0 = 748.080	748.856
WEIGHT OF BOLTS & BOM/LE17D124/PQD	& NUTS,SPRING WASHERS: 0B/SQD0B/R-0	95.474
T	OTAL WEIGHT OF STRUCTURE:	2673.434 Kgs 1

SUCCESSFULLY TESTED AT L&T-TLRTS-KANCHIPURAM ON 24th OF AUGUST 2018

AL	EX	PU	BSR	CSF	₹	27.0	08.18
	RED BY	CHECKED BY	REVIEWED BY	APPROVE	ED BY	D,	ATE
REV.	DATE		DESCRIPTION		CHKD.	REVED.	APPD.
	27.08.18	SUBMISSION FOR A	PPROVAL AFTER SUCCESS	SFUL TESTING	PU	BSR	CSR
0					PU	BSR	CSR 4
1	18.12.18	STEE	BOLT WEIGHT REVISED		311	Parm	-

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

	Project	LE17D124 - Intra-Pith-Kathmandu 40	00/220 KV			<u></u>			
	Order Ref. Drg No.	<u>-</u> .				Date	27-08-		
	BOM No.	BOM/LE17D124/PQD0E//R-0	-			Page	1	of 3	
	Srl Erection No Mark	Section	Length Size(In MM)	. ,, -	Unit Wt. In Kgs	Reqd. I	Jnit/Ass. Weight	Total Weight	
1	OM BODY EX	TN. FOR TOWER TYPE-"QD/DE" (13				7.7;	110,911	v cigin	
	1 N1MQD21S	H L200x200x15H-E350A	5235.00		45.600	2	238.716	477.432	
	2 N1MQD22H	L200x200x15H-E350A	5235.00		45.600	2	238.716	477,432	
	3 N1MQD23H	L150x150x12H-E350A	606.00		27.300	4	16.544	66.176	
	4 N1MQD24H	10MM PLATE H-E350A	1 75.00 X	606.00	78.500	8	8.325	66,600	
	5 N1MQD25L	L80x80x6-E250A	2800.00		7.300	2	20,440	40.880	
	6 N1MQD25R	L80x80x6-E250A	2800.00		7.300	2	20.440	40,880	
	7 N1MQD26LI	H L90x90x6H-E350A	2800.00		8.200	2	22.960	45.920	
	8 N1MQD26RI	H L90x90x6H-E350A	2800.00		8.200	2	22.960	45.920	
	9 N1MQD27L	L80x80x6-E250A	4615.00		7.300	2	33.690	67.380	
-	10 N1MQD27R	L80x80x6-E250A	4615.00		7.300	2	33.690	67.380	
1	ti nimod28LF	H L90x90x6H-E350A	4615.00		8.200	2	37.843	75.686	
1	12 N1MQD28RI	H L90x90x6H-E350A	4615.00		8.200	-2	37.843	75.686	
1	13 N1MQD29L	L65x65x5-E250A	286.00		4.900	2	1.401	2.802	
1	14 N1MQD29R	L65x65x5-E250A	286,00		4.900	2	1,401	2.802	
1	5 N1MQD30LH	H L70x70x5H-E350A	286.00		5.300	2	1.516	3.032	
1	6 N1MQD30RH	H L70x70x5H-E350A	286.00		5.300	2	1.516	3.032	
1	7 N1MQD31	5MM PLATE-E250A	. 70.00 X	286.00	39.250	8	0.786	6.288	
1	8 N1MQD32H	5MM PLATE H-E350A	70.00 X	286.00	39.250	8	0.786	6.288	
1	9 N1MQD33L	L50x50x4-E250A	1482.00		3.000	4	4.446	17.784	
2	0 N1MQD33R	L50x50x4-E250A	1482.00		3.000	4	4,446	17.784	
2	1 N1MQD34	5MM PLATE-E250A	120.00 X	139.00	39,250	8	0.655	5.240	
-2	2 N1MQD35L	L55x55x4-E250A	2059.00		3,300	4	6.795	27.180	
2	3 N1MQD35R	L55x55x4-E250A	2059.00	erice to a transmission of a significant	3.300	4	6.795	27.180	
2	4 N1MQD36LH	L60x60x4H-E350A	2913.00		3,700	3	10.778	32.334	
2	5 N1MQD36RH	L60x60x4H-E350A	2913.00	-	3.700	3	10,778	32 .334	
2	6 N1MQD36AH	L60x60x4H-E350A	2913.00		3.700	1	10,778	10.778	
2	7 N1MQD36BH	L60x60x4H-E350A	2913.00		3.700	1	10,778	10.778	
2	8 N1MQD37	5MM PLATE-E250A	110.00 X	120.00	39.250	-8	0,518	4.144	
2	9 N1MQD37AH	5MM PLATE H-E350A	120.00 X	124.00	39.250	8	0.584	4.672	
3	0 N1MQD38L	L55x55x4-E250A	2018.00	•	3.300	3	6.659	19,977	
3	1 N1MQD38R	L55x55x4-E250A	2018.00		3.300	3	6.659	19.977	
32	2 N1MQD38AL	L55x55x4-E250A	2018.00		3.300	1	6.659	6.659	
						•		0.000	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600:089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

	roject Order Ref.	LE17D124 - Intra-Pith-Kathmandu 4	100/220 KV			Date	27-08-	2040	
	rg No.	-	-			Page		2016 of 3	
8	OM No.	BOM/LE17D124/PQD0E//R-0							
	rl Erection o Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Reqd. U	Jnit/Ass. Weight	Total Weight	
4	<u>OM BODY EX</u>	TN, FOR TOWER TYPE-"QD/DE" (1	32kV, WZ-4)	· · · · · ·	1				
3	3 N1MQD38A	R L55x55x4-E250A	2018.00		3.300	1	6.659	6.659	
3	4 N1MQD39L	L45x45x4-E250A	2054.00		2.700	4	5.546	22.184	
3	5 N1MQD39R	L45x45x4-E250A	2054.00		2.700	4	5.546	22.184	
3	6 N1MQD40L	L45x45x4-E250A	1785.00		2.700	4	4.820	19.280	
3	7 N1MQD40R	L45x45x4-E250A	1785.00		2.700	4.	4.820	19.280	
3	8 N1MQD41H	8MM PLATE H-E350A	242,00 X	290.00	62.800	4	4.407	17.628	
.3	9 N1MQD42H	L55x55x5H-E350A	4700.00		4.100	4	19.270	77.080	
4	0 N1MQD43H	L55x55x5H-E350A	3931:00		4.100	4	16.117	64,468	
4	1 N1MQD44H	L50x50x5H-E350A	286.00		3.800	4	1.087	4.348	
4	2 N1MQD45H	5MM PLATE H-E350A	50.00 X	286.00	39.250	8	0.561	4.488	
.4	3 N1MQD46	5MM PLATE-E250A	108.00 X	122.00	39.250	8	0.517	4.136	
4	4 N1MQD47H	L50x50x4H-E350A	2017.00		3,000	4	6.051	24.204	
4	5 N1MQD48	L45x45x4-E250A	3768.00		2.700	4	10.174	40.696	
4	6 N1MQD48X	L45x45x4-E250A	3768.00		2.700	4	10.174	40.696	
4	7 N1MQD49	L45x45x4-E250A	5405.00		2.700	8	14.594	116.752	
4	8 N1MQD50	L45x45x4-E250A	1604.00		2,700	8	4.331	34.648	
4	9 N1MQD51H	5MM PLATE H-E350A	110. 00 X	145.00	39.250	8	0.626	5.008	
5	0 N1MQD52L	5MM PLATE-E250A	150,00 X	210.00	39,250	4	1.236	4.944	
5	1 N1MQD52R	5MM PLATE-E250A	150.00 X	210.00	39,250	4	1.236	4,944	
5	2 N1MQD53L	5MM PLATE-E250A	110.00 X	173.00	39.250	4.	0.747	2.988	
5	3 N1MQD53R	5MM PLATE-E250A	110.00 X	173.00	39.250	4	0.747	2.988	
5	4 N1MQD54H	L60x60x4H-E350A	4900.00		3.700	4	18.130	72.52 0	
5	5 N1MQD54XI	T L60x60x4H-E350A	4900.00	er - 1 1-11-12-14-15-15-15-15-15-15-15-15-15-15-15-15-15-	3.700	4	18.130	72.520	
5	6 N1MQD54Al	H L75x75x5H-E360A	412.00		5,700	4	2.348	9.392	
5	7 N1MQD55	L45x45x4-E250A	1064.00		2.700	4	2.873	11.492	
5	8 N1MQD56	L45x45x4-E250A	1064.00		2.700	4	2.873	11.492	
5	9 N1MQD57H	L60x60x4H-E350A	2929.00		3.700	4	10.837	43.348	
6	0 N1MQD58	L45x45x4-E250A	776.00		2.700	4	2.095	8.380	

TOTAL WEIGHT:

2577.184

*** - Item welded with another item

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POGNAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA. PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV BOM/LE17D124/PQD0E/P/R-0	Date 27-08-2018 Page 1 of 1	
Srl No	Section Invloved	Section Weight	
+0M BOD	Y EXTN. FOR TOWER TYPE-"QD/DE" (132kV, WZ-4)		
1	L45x45x4-E250A	347.084	
2	L50x50x4-E250A	35.568	
3	L55x55x4-E250A	107,632	
4	L65x65x5-E250A	5.604	
5.	L80x80x6-E250A	216,520	
6	L50x50x5H-E350A	4.348	
7	L55x55x5H-E350A	141.548	
8	L60x60x4H-E350A	274.612	
9	L70x70x5H-E350A	6.064	
10	L75x75x5H-E350A	9.392	
11	L90x90x6H-E350A	243.212	
12	L150x150x12H-E350A	66.176	
13	L200x200x15H-E350A	954.864	
14	L50x50x4H-E350A	24.204	
15	5MM PLATE H-E350A	20.456	
16	8MM PLATE H-E350A	17.628	
17	10MM PLATE H-E350A	66.600	
18	5MM PLATE-E250A	35.672	
	Total	2577.184	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 800 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 i - - BOM/LE17D124/PQD0B/SQD0B/R-0	- -		Date Page	18-12-20 1 c	018 of 1
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. Qty.	Unit/Ass. Weight	Total Weight
BOLTS & NUTS	OF +0M BODY EXTN. FOR TOWER TYPE-	QD/DE" (132KV, WZ-4)				
1 SQD0B1	M16x35MM LONG(IS:12427)		0,119	164	0.119	19.516
2 SQD082	M16x40MM LONG (IS:12427)		0.126	212	0.126	26.712
3 SQD083	M16x45MM LONG (IS:12427)		0.134	116	0.134	15.544
4 SQD084	M16x50MM LONG (IS:12427)		0.142	8	0.142	1.136
5 SQD085	M16x65MM LONG (IS:12427)		0.164	128	0.164	20.992
6 SQD086	M16x3,5mm SPR, WSR-IS3063	·	0,009	628	0.009	5.652
7 SQD0B7	M16x175LG SB (500D) 2N+1SP		0.423	14	0.423	5.922
			TOTAL V	VEIGHT		95.474

*** - Item welded with another item

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALUE ROAD, PO BOX : 979-CHENNAI - 600 089. INDIA. PHONE : 044 - 22492747 (20 LINES) FAX : 044 - 22494172

Project Order Ref.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV		Date	18_1	2-2018	
Drg No. BOM No.	BOM/LE17D124/PQD0B/SQD0B/R-0		Page	1	of	1
Srl No	Section Invloved	Section Weight				
BOLTS & N	UTS OF +0M BODY EXTN. FOR TOWER TYPE-"QD/DE" (132kV, WZ-4)					
ጎ	M16x3.5mm SPR, WSR-IS3063	5.652				
2	M16x175LG SB (500D) 2N+1SP	5.922				
3	M16x35MM LONG(IS:12427)	19.516				
4.	M16x40MM LONG (IS:12427)	26.712				
5	M16x45MM LONG (IS:12427)	15.544				
6 .	M16x50MM LONG (IS:12427)	1.136	i			
7	M16x65MM LONG (IS;12427)	20.992				
	Total	95.474	_			

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref.	LE17D124 - Intra-Pith-Kathmandu 400/22		Date 27-08-2018				
Drg No.	-	-		Page		of 1	
BOM No.	BOM/LE17D124/PQD0B/SQD0W/R-0			 			
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. L Qty.	Jnit/Ass. Weight	Total Weight	
PACK WASHE	ERS OF +0M BODY EXTN. FOR TOWER T	YPE-"QD/DE" (132kV,	WZ-4)		·		
1 SQD0W1	M16x4MM ROUND P.WASHER IS2016		0.014	16,-	0.014	,224	
2 SQD0W2	M16x5MM ROUND P.WASHER IS2016		0.018	12	0.018	.216	
3 SQD0W3	M16x6MM ROUND P.WASHER IS2016		0.021	16	0.021	.336	
•							
		the section of the se					
			TOTAL WEIGHT:			.776	

*** - Item welded with another item

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 800 089, INDIA. PHONE : 044 - 22492747 (20 LINES) FAX : 044 - 22494172

Project Order Ref.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV		Date	27-0	8	
Drg No. BOM No.	- BOM/LE17D124/PQD0B/SQD0W/R-0		Page	1	of	1
Srl No	ction Invloved Section Weight					
PACK WAS	HERS OF +0M BODY EXTN. FOR TOWER TYPE-"Q	D/DE" (132kV, WZ-4)	•			
1	M16x4MM ROUND P.WASHER IS2016	.224				
2	M16x5MM ROUND P.WASHER IS2016	.216				
3	M16x6MM ROUND P.WASHER IS2016	.336				
	Total		-			

CLIENT:

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

CONSULTANT:

POWER GRID CORPORATION OF INDIA LTD

PROJECT:

TAMAKOSHI - KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT -400/220 KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE

LOA No.:

073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4M-GA-0404 (SHEET 1 To 9)

BOM No.:

BOM/LE17D124/132kV/QD/004

हान / निर्माण हेतु अनुमोदित। दी गई टिप्पणियाँ एवं आशोधनाँ को यों को सम्मिलित क

NO OF SHEETS:

23

BILL OF MATERIAL BASIC BODY FOR TOWER TYPE - "QD/DE" (132kV, WZ-4)

Approved / Released For Fabrication/Construction Approved / Released For Fabrication/Construction subject to incorporation of comments, modification s noted. Revised drawings/designs required To be resubmitted for approval after incorporating the comments For information and record

Not approved

Nepal Electricity Authority Tamakoshi-Kathmandu 1

Checked By: Recommended By: Approved By:	Date: 27 Date: Date:	HT MEMBERS: BOM/LE17D124/PQDBS/SQDBH/
		MS MEMBERS INCLUDING PAC ACCESSORIES ETC. BOM/LE17D124/PQDBS/SQDBM/ BOM/LE17D124/PQDBB/SQDBW/

Transmission Line F	voject WEIGHT OF STRUCTURE				
Date: 7 Date: Date:	HT MEMBERS: BOM/LE17D124/PQDBS/SQDBH/R-0	10679.077			
\	MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ETC. BOM/LE17D124/PQDBS/SQDBM/R-0 = 2695.252 BOM/LE17D124/PQDBB/SQDBW/R-0 = 9.866	2705.118			
	WEIGHT OF BOLTS & NUTS,SPRING WASHERS: BOM/LE17D124/PQDBB/SQDBB/R-0	626.945 🛕			
	TOTAL WEIGHT OF STRUCTU	RE: 14011.14 Kgs /1			

SUCCESSFULLY TESTED AT L&T-TLRTS-KANCHIPURAM ON 24th OF AUGUST 2018

					gh_	MA	(
1	18.12.18	STEP	STEP BOLT WEIGHT REVISED			BSR	CSR
0	27.08.18	SUBMISSION FOR AP	UBMISSION FOR APPROVAL AFTER SUCCESSFUL TESTING			BSR	CSR
REV.	DATE		DESCRIPTION			REVED.	APPD.
PREPARED BY ALEX		ATTIONS		APPROVE	ED BY	DATE	
				R 27.		08.18	

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Project Order Ref.	LE17D124 - Intra-Pith-Kathmandu	400/220 KV	·	Date	27-08-	-2018	
Drg No. BOM No.	BOM/LE17D124/PQDBS//R-0	-		Page	1	of 17	
Srl Erection No Mark	Section	Length Size(in MM)	Unit Wt. In Kgs	Reqd. I	Unit/Ass, Weight	Total Weight	
BASIC BODY	FOR TOWER TYPE-"QD/DE" (132k				**************************************		
1 N1MQD70	SH L200x200x15H-E350A	3570.00	45.600	2	162.792	325.584	
2 N1MQD71	H L200x200x15H-E350A	3570.00	45.600	2	162.792	325.584	
3 N1MQD72	SH L200x200x15H-E350A	6163.00	45.600	2	281,033	562.066	
4 N1MQD73I	H L200x200x15H-E350A	6163.00	45.600	2	281.033	562.066	
5 N1MQD74I	H L150x150x12H-E350A	606.00	27.300	8.	16.544	132.352	
6 N1MQD75	H 10MM PLATE H-E350A	175.00 X 606.00	78.500	16	8.325	133,200	
7 N1MQD76L	L90x90x6-E250A	4849.00	8.200	2	39.762	79.524	
8 N1MQD76F	R L90x90x6-E250A	4849.00	8.200	2	39.762	79,524	
9 N1MQD77L	.H L90x90x6H-E350A	4849.00	8.200	2	39.762	79.524	
10 N1MQD77F	RH L90x90x6H-E350A	4849.00	8.200	Ž	39.762	79.524	
11 N1MQD78L	L60x60x4-E250A	2473.00	3.700	4	9.150	36,600	
12 N1MQD78F	R L60x60x4-E250A	2473.00	3.700	4	9.150	36.600	
13 N1MQD79	L45x45x4-E250A	1771.00	2.700	8	4.782	38.256	
14 N1MQD80L	L65x65x4-E250A	2197.00	4.000	4	8.788	35.152	
15 N1MQD80F	R L65x65x4-E250A	2197.00	4.000	4	8.788	35.152	
16 N1MQD81F	l L90x90x6H-E350A	5500.00	8.200	2	45.100	90,200	
17 N1MQD81X	(H L90x90x6H-E350A	5500.00	8.200	2	45.10 0	90.200	
18 N1MQD82F	l L90x90x6H-E350A	2929.00	8:200	2	24.018	48,036	
19 N1MQD82X	(H L90x90x6H-E350A	2929.00	8.200	2	24.018	48.036	
20 N1MQD83H	H L70x70x5H-E350A	286.00	5.300	4	1.5 1 6	6.064	
21 N1MQD84H	5MM PLATE H-E350A	70.00 × 286.00	39.250	8	0.786	6.288	
22 N1MQD85H	L45x45x4H-E350A	1143.00	2.700	4	3.086	12.344	
23" N1MQD87H	L55x55x4H-E350A	2022.00	3.300	4	6.673	26.692	
24 N1MQD88H	L60x60x4H-E350A	2235.00	3.700	4	8.2 70	33.080	
25 N1MQD90	L50x50x4-E250A	2448.00	3.000	4	7.344	29.376	
26 N1MQD91H	L50x50x4H-E350A	1776.00	3.000	2	5.328	10.656	
27 N1MQD91X	H L50x50x4H-E350A	1776.00	3,000	2	5.328	10.656	
28 N1MQD93H	L90x90x7H-E350A	4474.00	9.600	2.	42.950	85.900	
29 N1MQD93A	H 8MM PLATE H-E350A	185.00 X 201.00	62.800	4	2.335	9.340	
30 N1MQD94H	L90x90x7H-E350A	5500,00	9,600	2	52.800	105.600	
31 N1MQD94XI	H L90x90x7H-E350A	5500.00	9.600	2	52.800	105.600	
32 N1MQD95H	L90x90x7H-E350A	2897.00	9.600	2	27.811	55.622	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX ; 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Oi Di	der Ref. g No.	LE17D124 - Intra-Pith-Kathmandu - -	400/220 KV			Date Page	27-08-	2018 of 17	
B(DM No.	BOM/LE17D124/PQDBS//R-0							
	Erection Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Regd. L Qty.	Jnit/Ass. Weight	Total Weight	
<u>B/</u>	ASIC BODY FO	OR TOWER TYPE-"QD/DE" (132k	:V, WZ-4)					•	
33	N1MQD95XH	L90x90x7H-E350A	2897:00		9,600	2	27.811	55,622	
34	N1MQD96H	L70x70x6H-E350A	346.00		6.300	4	2.180	8.720	
3	N1MQD97H	5MM PLATE H-E350A	70100 X	346.00	3 9.250	8	0.951	7.608	
36	N1MQD98H	L45x45x4H-E350A	1127.00		2,700	4	3:043	12.172	
37	N1MQD100H	L55x55x4H-E350A	2035.00		3.300	4	6.716	26,864	
38	N1MQD101H	L60x60x4H-E350A	2203.00		3.700	4	8.151	32.604	
39	N1MQD103	L50x50x4-E250A	2388.00		3.000	4	7.164	28.656	
4(N1MQD104H	L50x50x4H-E350A	1822.00		3.000	2	5.466	10.932	
4	N1MQD104XI	H_ L50x50x4H-E350A	1822.00		3.000	2	5.46 6	10.932	
42	N1MQD106H	L90x90x7H-E350A	4765.00		9.600	2	45.744	91.488	
43	N1MQD107H	8MM PLATE H-E350A	225.00 X	294.00	62.800	4	4.154	16.616	
44	N1MQD108	5MM PLATE-E250A	120.00 X	191.00	39.250	4	0.900	3.600	
4.	N1MQD109H	L60x60x4H-E350A	3013.00		3.700	4	11.148	44,592	
46	N1MQD110LI	H 5MM PLATE H-E350A	110.00 X	182.00	39.250	4	0.786	3:144	
47	N1MQD110R	H 5MM PLATE H-E350A	110.00 X	182.00	39.250	4	0.786	3.144	
48	N1MQD111	L45x45x4-E250A	1288.00		2.700	2	3.478	6.956	
49	N1MQD112	L45x45x4-E250A	2666.00		2.700	2	7.198	14.396	
50	N1MQD113	L45x45x4-E250A	2605.00		2.700	2	7.034	14:068	
5	N1MQD114	L45x45x4-E250A	3432.00		2.700	.2	9.266	18.532	
52	N1MQD115	L45x45x4-E250A	3399.00		2.700	2	9.177	18.354	
53	N1MQD116	5MM PLATE-E250A	110.00 X	175.00	39,250	6	0.756	4.536	
54	N1MQD118	5MM PLATE-E250A	110.00 X	165.00	39.250	[6	0.712	4.272	
55	N1MQD120	L45x45x4-E250A	1288.00		2,700		3.478	6.956	
56	N1MQD121	L45x45x4-E250A	2627.00		2.700	2	7.093	14 .186	
*	N1MQD122	L45x45x4-E250A	2644.00		2,700	2	7.139	14.278	
	N1MQD123	L45x45x4-E250A	3411.00		2.700	2	9.210	18.420	
	N1MQD124	L45x45x4-E250A	3422.00		2.700	2	9.239	18.478	
	N1MQD125	5MM PLATE-E250A	110.00 X	165,00	39.250	6	0.712	4.272	
6		5MM PLATE-E250A	110.00 X	175.00	39.250	6	0.756	4,536	
62	·	•	1938.00	, , a, uju	2.700	2	5.233	10.466	
	N1MQD129H		110.00 X	165.00	39,250		0.712		
			110.00 X	175.00		2		1.424	
04	N1MQD131H	5MM PLATE H-E350A	7 (U,U) 7	175.00	39.250	2	0.756	1.512	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX; 979 CHENNAL- 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

•	E17D124 - Intra-Pith-Kathmandu 400/22	0 KV						
Order Ref Drg No. ~					Date	27-08- 3		
- .	OM/LE17D124/PQDBS//R-0	•			Page	Э,	of 17	
Srl Erection No Mark	Section	Length Size(In MM)	,	Unit Wt. In Kgs	Regd. l Qty.	Jnit/Ass. Weight	Totai Weight	
BASIC BODY FOR	R TOWER TYPE-"QD/DE" (132kV, WZ-	<u>4)</u>						
65 N1MQD132H	L45x45x4H-E350A	1941.00		2.700	2	5.241	10.482	
66 N1MQD133H	5MM PLATE H-E350A	110.00 X	165.00	39.250	2	0.712	1.424	
67 N1MQD134H	5MM PLATE H-E350A	110.00 X	175.00	39.250	2	0.756	1.512	
68 N1MQD160SH	L150x150x18H-E350A	4000.00		40.100	2	160.400	320,800	
69 N1MQD161H	L150×150×18H-E350A	4000.00		40,100	2	160,400	320.800	
70 N1MQD162SH	L150x150x14H-E350A	4000.00		31.500	2	126.000	252.000	
71 N1MQD163H	L150x150x14H-E350A	4000.00		31,500	2	126,000	252.000	
72 N1MQD164SH	L130x130x12H-E350A	4036.00		23.500	2	94.846	189.692	
73 N1MQD165H	L130x130x12H-E350A	4036.00		23.500	2	94.846	189.692	
74 N1MQD166H	L150x150x12H-E350A	476.00		27.300	4.	12.995	51.980	
75 N1MQD167H	10MM PLATE H-E350A	150.00 X	476.00	78.500	8	5,605	44.840	
76 N1MQD168	3MM PLATE-E250A	100.00 X	230,00	23.550	8	0.542	4.336	
77 N1MQD169H	L130x130x10H-E350A	472.00		19.700	4	9.298	37.192	
78 N1MQD170H	10MM PLATE H-E350A	130.00 X	472.00	78.500	8	4.817	38,536	
79 N1MQD171	4MM PLATE-E250A	100.00 X	225.00	31.400	8	0.707	5.656	
80: N1MQD172H	L120x120x8H-E350A	380.00		14.700	4	5.586	22.344	
81 N1MQD173H	8MM PLATE H-E350A	110.00 X	380.00	62.800	8	2.625	21,000	
82 N1MQD174	2MM PLATE-E250A	85.00 X	185.00	15.700	8	0.247	1,976	
83 N1MQD175L	L75x75x6-E250A	2436.00		6.800	2	16.565	33,130	
84 N1MQD175R	L75x75x6-E250A	2436.00		6.800	2	16.565	33.130	
85 N1MQD176LH	L100x100x8H-E350A	2469.00		12.100	2	29.875	59.750	
86 N1MQD176RH	L100x100x8H-E350A	2469.00		12.100	2	29.875	59.750	
87 N1MQD177H	L100x100x7H-E350A	4389.00		10,700	2	46.962	93.924	
88 N1MQD179	8MM PLATE-E250A	75.00 X	90.00	62.800	8	0.424	3.392	
89 N1MQD180H	8MM PLATE H-E350A	165.00 X	225.00	62.800	4	2.331	9.324	
90 N1MQD181	8MM PLATE-E250A	50.00 X	93.00	62.800	4	0.292	1.168	
91 N1MQD182H	L110x110x8H-E350A	5030.00		13.400	2	67.402	134.804	
92 N1MQD182XH	L110x110x8H-E350A	5030.00		13.400	2	67.402	134.804	
93 N1MQD183	L45x45x4-E250A	1236.00		2.700	4	3.337	13.348	
94 N1MQD184	L45x30x4-E250A	1352.00		2.200	4	2.974	11.896	
95 N1MQD185	L45x45x4-E250A	1313.00		2.700	2	3.545	7.090	
96 N1MQD185X	L45x45x4-E250A	1313.00		2.700	2	3.545	7.090	
		·		·				

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

		LE17D124 - Intra-Pith-Kathmandu 400/22	0 KV	······································		<u> </u>			
	der Ref. g No.	-				Date	27-08-		
	OM No.	BOM/LE17D124/PQDBS//R-0	<u>-</u>			Page	4	of 17	
	Erection Mark	Section	Length Size(In MM))	Unit Wt. In Kgs	Reqd. (Jnit/Ass. Weight	Total Weight	***
		OR TOWER TYPE-"QD/DE" (132kV, WZ-	4)				<u></u>	**************************************	
97	' N1MQD186	L75x75x6-E250A	4074.00		6.800	2	27.703	5 5.406	
98	N1MQD187H	8MM PLATE H-E350A	170.00 X	293.00	62.800	4	3,128	12.512	
99	N1MQD188	8MM PLATE-E250A	50.00 X	93.00	62.800	4	0.292	1.168	
100	N1MQD189L	L70x70x5-E250A	2243.00		5,300	2	11.888	23.776	
101	N1MQD189R	L70x70x5-E250A	2243.00		5,300	2.	11.888	23.776	-
102	N1MQD190L	H. L100x100x6H-E350A	2298.00		9.200	2	21,142	42,28 4	
103	N1MQD190R	H L100x100x6H-E350A	2298.00		9.200	.2	21,142	42.284	
104	N1MQD191H	L100x100x7H-E350A	3948.00		10.700	2	42.244	84.488	
105	N1MQD192H	8MM PLATE H-E350A	155.00 X	178.0 0	62,800	4	1.733	6.932	
106	N1MQD193H	L100x100x8H-E350A	4673.00		12.100	2	56.543	113,086	
107	N1MQD193X	H L100x100x8H-E350A	4673.00		12.100	2	56.543	113.086	
108	N1MQD194	L45x45x4-E250A	1143.00		2.700	4	3,086	12.344	
109	N1MQD195	L45x30x4-E250A	1355.00		2.200	4	2.981	11.924	
110	N1MQD196	L45x45x4-E250A	1226.00		2,700	2.	3.310	6.620	
111	N1MQD196X	L45x45x4-E250A	1226.00		2.700	2	3.310	6.620	
112	N1MQD197	L65x65x5-E250A	36 34.00		4.900	2	17.807	35.614	
113	N1MQD198H	8MM PLATE H-E350A	155.00 X	280.00	62.800	4.	2,725	10.904	
114	N1MQD199	L45x30x4-E250A	958.00		2.200	2	2.108	4.216	
115	N1MQD200	5MM PLATE-E250A	107.00 X	237.00	39.250	.2	0.995	1.990	
1 16	N1MQD201H	L90x90x6H-E350A	4014.00		8.200	2	32.915	65.830	
117	N1MQD201XH	H L90x90x6H-E350A	4014.00		8.200	2	32.915	65.830	
118	N1MQD202	L45x30x4-E250A	957.00		2.200	2	2.105	4.210	
119	N1MQD202X	L45x30x4-E250A	957:00	Service supplies a supplier	2.200	2	2.105	4.210	
120	N1MQD203H	L50x50x4H-E350A	1898.00		3.000	2	5.694	11.388	
121	N1MQD203XF	f L50x50x4H-E350A	1898.00		3.000	Ź	5.694	11.388	
12 2	N1MQD204	L45x30x4-E250A	1034.00		2.200	2	2.275	4.550	
123	N1MQD204X	L45x30x4-E250A	1034.00		2.200	2	2,275	4.550	
124	N1MQD205H	8MM PLATE H-E350A	150.00 X	230,00	62.800	4	2.167	8.668	
12 5	N1MQD206H	L100x100x7H-E350A	3928:00		10.700	2	42.030	84.060	
126	N1MQD206XH	L100x100x7H-E350A	3928.00		10.700	2	42.030	84.060	
127	N1MQD207	L45x30x4-E250A	973.00		2,200	2	2.141	4.282	
128	N1MQD207X	L45x30x4-E250A	973.00		2.200	2	2.141	4.282	
						_			

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POQNAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Proj Ord	ject er Ref.	LE17D124 - Intra-Pith-Kathmandu	400/220 KV		Date	27-08-2	2018	
	No. M No.	- BOM/LE17D124/PQDBS//R-0	-		Page	5 (of 17	
Srl	Erection Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Regd. L Qty.	Jnit/Ass. Weight	Total Weight	
BAS	SIC BODY F	OR TOWER TYPE-"QD/DE" (132k	***					_
129	N1MQD208	L45x30x4-E250A	1023.00	2.200	4	2.251	9.004	
130	N1MQD209	L45x30x4-E250A	1026.00	2.200	2	2.257	4.514	
131	N1MQD209X	(L45x30x4-E250A	1026.00	2.200	2	2.257	4.514	
132	N1MQD210	L75x75x6-E250A	3223,00	6,800	2	21.916	43.832	
133	N1MQD211	8MM PLATE H-E350A	158.00 X 210.00	62,800	4	2.084	8.336	
134	N1MQD212F	H L90x90x7H-E350A	265.00	9,600	2	2.544	5.088	
135	N1MQD213	L75x75x6-E250A	2479.00	6.800	2	16.857	33.714	
136	N1MQD213X	L75x75x6-E250A	2479.00	6.800	2	16.857	33.714	
137	N1MQD213/	8MM PLATE-E250A	145.00 × 155.00	62.800	4	1.411	5.644	
138	N1MQD214I	H L80x80x6H-E350A	2516.00	7.300	2	18.367	36.734	
139	N1MQD214>	(H L80x80x6H-E350A	25 16. 0 0	7.300	2	18.367	36.734	
140	N1MQD215H	l L90x90x6H-E350A	4389.00	8.200	2	35.990	71.980	
141	N1MQD216	L100x100x7-E250A	4994.00	10.700	2	53.436	106.872	
142	N1MQD216	C L100x100x7-E250A	4994.00	10,700	2	53.436	106.872	
143	N1MQD217	L45x45x4-E250A	1229.00	2.700	2	3.318	6.636	
144	N1MQD217	C L45x45x4-E250A	1229.00	2,700	2	3,318	6.636	
145	N1MQD218	L45x30x4-E250A	1316.00	2.200	4	2.895	11.580	
146	N1MQD219	L45x45x4-E250A	1302.00	2.700	2	3,515	7.030	
147	N1MQD2192	K L45x45x4-E250A	1302.00	2.700	2	3,515	7.030	
148	N1MQD220	L80x80x6-E250A	4329.00	7.300	2	31.602	63.204	
149	N1MQD221	L75x75x6-E250A	248.00	6.800	2	1.686	3.372	
150	N1MQD222	L70x70x5-E250A	2280.00	5.300	2	12.084	24.168	
151	N1MQD222	K L70x70x5-E250A	2280.00	5.300	· · · · 2	12:084	24:168	
152	N1MQD223	H L75x75x6H-E350A	2378.00	6.800	2	16.170	32.340	
153	N1MQD2233	KH L75x75x6H-E350A	2378.00	6.800	2	16.170	32.340	
154	N1MQD224	1 L100x100x6H-E350A	3948.00	9.200	2	36.322	72.644	
155	N1MQD225	H L90x90x6H-E350A	4633.00	8,200	2	37.991	75,982	
156	N1MQD225	KH L90x90x6H-E350A	4633,00	8.200	2	37.991	75.982	
157	N1MQD226	L45x45x4-E250A	1135.00	2.700	.2	3.065	6.130	
158	N1MQD226	X L45x45x4-E250A	1135.00	2.700	2	3.065	6.130	
159	N1MQD227	L45x30x4-E250A	1319.00°	2.200	4	2.902	11.608	
160	N1MQD228	L45x45x4-E250A	1214.00	2.700	2	3.278	6.556	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNA) -.600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

	oject	LE17D124 - Intra-Pith-Kath	mandu 400/220 KV	·				····	—
	der Ref. g No.	*				Date	27-08-		
	OM No.	BOM/LE17D124/PQDBS//F	- R-0			Page	6	of 17	
Sr No	l Erection Mark	Section	Length Size(In MM)		Unit Wt.	Reqd. L	Jnit/Ass. Weight	Total Weight	
B/	SIC BODY F	OR TOWER TYPE-"QD/DE				<u> </u>	rreignt	Weight	
161	N1MQD228X	C L45x45x4-E250A	1214.00		2.700	2	3.278	6.556	
162	N1MQD229	L65x65x4-E250A	3888.00		4.000	2	15.552	31,104	
163	N1MQD230	6MM PLATE-E250A	155.00 X	215.00	47.100	4	1.570	6.280	
164	N1MQD231	L45x30x4-E250A	1119.00		2.200	2	2.462	4.924	
165	N1MQD232F	L75x75x6H-E350A	4034.00		6.800	2	27.431	54.862	
166	N1MQD232X	H L75x75x6H-E350A	4034.00		6.800	2	27.431	54.862	
167	N1MQD233	L45x30x4-E250A	1006,00		2.200	,2	2.213	4.426	
168	N1MQD233X	L45x30x4-E250A	1006.00		2.200	2	2.213	4.426	
169	N1MQD234H	L55x55x4H-E350A	1727.0 0		3,300	4	5,699	22.796	
170	N1MQD235	L45x30x4-E250A	1044,00		2.200	2	2.297	4.594	
171	N1MQD235X	L45x30x4-E250A	1044.00		2.200	2	2.297	4.594	
172	N1MQD236H	8MM PLATE H-E350A	150.00 X	202,00	62.800	4	1.903	7.612	
173	N1MQD237H	L75x75x6H-E350A	3909.00		6.800	2	26.581	53.162	
174	N1MQD237X	H L75x75x6H-E350A	3909.00		6.800	2	26,581	53.162	
175	N1MQD238	L45x30x4-E250A	983.00		2.200	2	2.163	4.326	
176	N1MQD238X	L45x30x4-E250A	983,00		2,200	2	2.163	4,326	
177	N1MQD239	L45x30x4-E250A	1054.00		2.200	4	2.319	9.276	
178	N1MQD240	L45x30x4-E250A	1047.00		2.200	2	2.303	4.606	
179	N1MQD240X	L45x30x4-E250A	1047.00		2.200	2	2.303	4.606	
180	N1MQD241H	L50x50x4H-E350A	3444.00		3.000	2	10.332	20.664	
181	N1MQD242H	8MM PLATE H-E350A	150.00 X	321.00	62,800	4	3.024	12.096	
182	N1MQD243H	L45x45x4H-E350A	1580.00		2.700	2	4.266	8.532	
183	N1MQD244H	5MM PLATE H-E350A		180.00	39.250	2	0.777	1.554	
184	N1MQD245H	5MM PLATÉ H-E350A	110.00 X	175.00	39.250	2	0.756	1,512	
185	N1MQD246H	L45x45x4H-E350A	1594.00		2.700	2	4.304	8,608	
186	N1MQD247H	5MM PLATE H-E350A	110.00 X	175.00	39.250	2	0.756	1.512	
187	N1MQD248H	5MM PLATE H-E350A	110.00 X	180.00	39,250	2	0.777	1,554	
188	N1MQD249H	L45x45x4H-E350A	1456.00		2,700	2	3.931	7.862	
189	N1MQD250H	5MM PLATE H-E350A	110.00 X	175.00	39.250	2			
	N1MQD251H	5MM PLATE H-E350A	110.00 X	180.00	39.250 39.250	2 2	0.756 0.777	1.512	
	N1MQD252H	L45x45x4H-E350A	1470.00	,00.00	2.700		0.777	1.554	
	N1MQD253H	5MM PLATE H-E350A	110.00, X	180.00		2	3.969	7.938	
			1 0.00 , A	נוט.טנו	39.250	2	0.777	1.554	

ECC CONSTRUCTION DIVISION

TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089. INDIA, PHÔNE : 044 - 22704000 FAX : 044 - 22705494

O:	oject der Ref. g No.	LE17D124 - Intra-Pith-Kathmandu 400/220				Date	27-08-		
	OM No.	BOM/LE17D124/PQDBS//R-0	~			Page	7	of 17	
	Erection Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Read. U	Jnit/Ass. Weight	Total Weight	•
		OR TOWER TYPE-"QD/DE" (132kV, WZ-4)	1.				TT OIGHT	
193	N1MQD254F	1 5MM PLATE H-E350A	110.00 X	175.00	39.25 0	2	0.756	1.512	
194	N1MQD255F	H L45x45x4H-E350A	1428.00		2.700	2	3,856	7.712	
195	N1MQD256F		110.00 X	175:00	39.250	2	0.756	1.512	
196	N1MQD257F	5MM PLATE H-E350A	110.00 X	170.00	39,250	2	0.734	1.468	
197	N1MQD258H	H E45x45x4H-E350A	1442.00		2.700	.2	3.89 3	7.786	
198	N1MQD259F	5MM PLATE H-E350A	110.00 X	170,00	39.250	2	0.734	1.468	
199	N1MQD260F	5MM PLATE H-E350A	110.00 X	175,00	39.250	2	0.756	1.512	
200	N1MQD261	L45x30x4-E250A	1308.00		2.200	2	2.878	5.756	
201	N1MQD262	5MM PLATE-E250A	1 10.00 X	170.00	39.250	Ź	0.734	1,468	
202	N1MQD263	5MM PLATE-E250A	110.00 X	175.00	39.250	2	0.756	1.512	
203	N1MQD264	L45x30x4-E250A	1322.00		2.200	2	2.908	5.816	
2 04	N1MQD265	5MM PLATE-E250A	110.00 X	175.00	39,250	2	0.756	1.512	
205	N1MQD266	5MM PLATE-E250A	110.00 X	170,00	39.250	2	0.734	1.468	
206	N1MQD267	L45x30x4-E250A	1298.00		2.200	2	2.856	5.712	
207	N1MQD268	5MM PLATE-E250A	110.00 X	170.00	39.250	2	0.734	1.468	
208	N1MQD269	5MM PLATE-E250A	110.00 X	170.00	39.250	2	0.734	1,468	
209	N1MQD270	L45x30x4-E250A	1305.00		2.200	2	2.871	5,742	
210	N1MQD271	5MM PLATE-E250A	110.00 X	155.00	39.250	2	0.669	1.338	
211	N1MQD272	5MM PLATE-E250A	110.00 X	170.00	39,250	2	0.734	1.468	
212	N1MQD273	L45x30x4-E250A	1208.00		2.200	2	2.658	5,316	
213	N1MQD274	5MM PLATE-E250A	110.00 X	170.00	39,250	2	0.734	1.468	
214	N1MQD275	5MM PLATE-E250A	110.00 X	170.00	39.250	2	0.734	1.468	
215	N1MQD276	L45x30x4-E250A	1217.00		2.200		2.677	5.354	
216	N1MQD277	5MM PLATE-E250A	110.00 X	170.00	39.250	2	0.734	1.468	
217	N1MQD278	5MM PLATE-E250A	110.00 X	155.00	39.250	2	0.669	1.338	
218	N1MQD300SI	H L110x110x8H-E350A	4050.00		13.400	2	54.270	108.540	
219	N1MQD301H	L110x110x8H-E350A	4050.00		13.400	2	54.270	108.540	
2 20	N1MQD302Si	H L80x80x6H-E350A	5539.00	*	7.300	2	40,435	80.870	
2 21	N1MQD303H	L80x80x6H-E350A	5539,00		7.300	2	40.435	80.870	
222	N1MQD304St	H L60x60x5H-E350A	5542.00		4.500	2	24.939	49.878	
223	N1MQD305H	L60x60x5H-E350A	5542.00		4.500	2	24.939	49.878	
224	N1MQD306H	·	350.00		9.200	4	3.220	12.880	
					J.200	7	0.220	14.00V	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

	oject der Ref.	LE17D124 - Intra-Pith-Kathmandu 400/2	20 KV			<u></u>			
	g No.	-	_			Date	27-08-		
	OM No.	BOM/LE17D124/PQDBS//R-0				Page	8	of 17	
	Erection Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Reqd. L Qty.	Jnit/Ass. Weight	Total Weight	
B/	SIC BODY F	OR TOWER TYPE-"QD/DE" (132kV, WZ				~9.	TOIGIK	- YT CIGIT	
225	N1MQD307H	6MM PLAŢE H-E350A	80.00 X	350.00	47.100	8	1.319	10.552	
226	N1MQD308	4MM PLATE-E250A	80.00 X	170,00	31.400	8	0.427	3.416	
227	N1MQD309F	L70x70x6H-E350A	356.00		6.300	4	2.243	8.972	
228	N1MQD310F	6MM PLATE H-E350A	60.00 X	356.00	47.100	8	1.006	8.048	
2 2 9	N1MQD310A	2MM PLATE-E250A	50.00 X	175.00	15.7 0 0	8	0.137	1.096	
230	N1MQD311	L45x30x4-E250A	962.00		2.200	2	2.116	4.232	
231	N1MQD312F	L70x70x6H-E350A	3633.00		6.300	2	22.888	45.776	
232	N1MQD312X	H L70x70x6H-E350A	3633.00		6.300	2	22,888	45.776	
233	N1MQD313	L45x30x4-E250A	726,00		2.200	4	1.597	6.388	
234	N1MQD314	L45x30x4-E250A	887.00		2.200	2	1.951	3.902	
235	N1MQD314X	L45x30x4-E250A	887.00		2.200	2	1.951	3.902	
236	N1MQD315	5MM PLATE-E250A	90.00 X	140.00	39.250	2	0.495	, 9 90	
237	N1MQD316	5MM PLATE-E250A	130,00 X	140.00	39.250	2	0.714	1.428	
238	N1MQD317H	L50x50x4H-E350A	1682,00		3.000	2	5.046	10.092	
239	N1MQD317X	H L50x50x4H-E350A	1682.00		3.000	2	5.046	10.092	
2 40	N1MQD318H	6MM PLATE H-E350A	160.00 X	498.00	47.100	2	3.753	7.506	
241	N1MQD319	L45x30x4-E250A	953.00		2.200	2	2.097	4.194	
242	N1MQD319X	L45x30x4-E250A	953.00		2.200	2	2.097	4.194	
243	N1MQD320	L45x30x4-E250A	823.00		2,200	4	1,811	7.244	
244	N1MQD321H	6MM PLÂTE H-E350A	140.00 X	179.00	47.100	4	1.180	4.720	
245	N1MQD322H	L100x100x6H-E350A	3588.00		9.200	2	3 3.010	66.020	
246	N1MQD322XI	H L100x100x6H-E350A	3588.00		9.200	2	33.010	66.020	
247	N1MQD323	L45x45x4=E250A	1370.00		2.700	4	3.699	14.796	٠
248	N1MQD324	L70x70x5-E250A	2803.00		5.300	2	14.856	29.712	
249	N1MQD325H	8MM PLATE H-E350A	140.00 X	250.00	62.800	4	2.198	8.792	
250	N1MQD326	L45x30x4-E250A	967.00		2.200	2	2.127	4.254	
251	N1MQD327H	L60x60x5H-E350A	3 270.00		4.500	2	14.715	29,430	
25 2	N1MQD327XH	l L60x60x5H-E350A	3270.00		4.500	2	14.715	29.430	
253	N1MQD328	5MM PLATE-E250A	162.00 X	207.00	39.250	2	1.316	2.632	
254	N1MQD329	L45x30x4-E250A	784.00		2.200	2	1.725	3.45 0	
255	N1MQD329X	L45x30x4-E250A	784.00		2.200	2	1.725	3:450	
256	N1MQD330H	L50x50x4H-E350A	1447.00		3.000	2	4.341	8.682	
			•		- •	_		0.00Z	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

	oject der Ref.	LE17D124 - Intra-Pith-Kathman	du 400/220 KV		Date	27-08-	204B
	g No. DM No.	- BOM/LE17D124/PQDBS//R-0	-		Page		of 17
Srl	Erection Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. L Qty.	Jnit/Ass. Weight	Total Weight
<u>B</u> A	SIC BODY F	OR TOWER TYPE-"QD/DE" (13		9-	w.y.	TTOIGHT	_ vvoignt
257	N1MQD330X	H L50x50x4H-E350A	1447.00	3,000	2	4.341	8.682
258	N1MQD331	L45x30x4-E250A	855.00	2.200	2	1.881	3.762
259	N1MQD331X	L45x30x4-E250A	855.00	2.200	2	1.881	3.762
260	N1MQD332H	8MM PLATE H-E350A	105,00 X 210,00	62.800	.4	1.385	5.540
261	N1MQD333H	L75x75x6H-E350A	3233.00	6.800	2	21.984	43.968
262	N1MQD333X	H L75x75x6H-E350A	3233.00	6.800	2	21.984	43,968
263	N1MQD334	L45x30x4-E250A	1204.00	2.200	4	2.649	10.596
264	N1MQD335H	L65x65x4H-E350A	2352.00	4.000	2	9.408	18.816
265	N1MQD336H	8MM PLATE H-E350A	160.00 X 276.00	62.800	4	2.773	11.092
266	N1MQD337	6MM PLATE-E250A	50.00 X 95.00	47.100	4	0.224	.896
267	N1MQD338	L45x30x4-E250A	804.00	2.200	2	1.769	3.538
26 8	N1MQD339H	L50x50x4H-E350A	2638.00	3.000	.2	7.914	15.828
269	N1MQD339XI	H L50x50x4H-E350A	2638.00	3,000	2	7.914	15,828
270	N1MQD341H	L55x55x4H-E350A	2193.00	3.300	2:	7,237	14.474
27 1	N1MQD342	L45x45x4-E250A	2200.00	2.700	4	5. 940	23.760
272	N1MQD343	L45x45x4-E250A	1937.00	2.700	4	5.230	20,920
273	N1MQD344	L45x45x4-E250A	1645.00	2.700	4	4.442	17.768
274	N1MQD345	L45x30x4-E250A	1380.00	2.200	4	3.036	12.144
275	N1MQD346	L45x30x4-E250A	1163,00	2.200	4	2.559	10.236
276	N1MQD347	L45x30x4-E250A	458.00	2.200	4	1.008	4.032
277	N1MQD348H	8MM PLATE H-E350A	109.00 X 167.00	62.800	2	1.143	2.286
278	N1MQD349H	8MM PLATE H-E350A	156.00 X 393.00	62.800	1	3.850	3.850
279	N1MQD350	L45x30x4-E250A	1112.00	2.200	2	2.446	4.892
280	N1MQD351H	L65x65x5H-E350A	3675.00	4.900	2	18,008	36.016
281	N1MQD351XH	H L65x65x5H-E350A	3675.00	4.900	2	18.008	36.016
282	N1MQD353	L45x30x4-E250A	911,00	2.200	2	2.004	4.008
283	N1MQD353X	L45x30x4-E250A	911.00	2.200	2	2.004	4.008
2 84	N1MQD356H	L55x55x4H-E350A	1528.00	3,300	2	5.042	10.084
285	N1MQD356XH	L55x55x4H-E350A	1528.00	3,300	2	5.042	10,084
286	N1MQD357	L45x30x4-E250A	944.00	2.200	2	2.077	4.154
.287	N1MQD357X	L45x30x4-E250A	944.00	2,200	2	2.077	4.154
288	N1MQD358H	6MM PLATE H-E350A	140.00 X 157.00	47.100	4	1.035	4,140
			· · · · · · · · · · · · · · · · · · ·	*****	•	1.000	7,170

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 989. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

	oject der Ref.	LE17D124 - Intra-Pith-Kath	mandu 400/220 KV	<u>-</u> -	<u>. </u>	Date	27-08-	2040	
Dr	g No.	••	-			Page		of 17	
BC	M No.	BOM/LE17D124/PQDBS//F	₹-0						
Srl No	Erection Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Reqd. U	Jnit/Ass. Weight	Total Weight	
		OR TOWER TYPE-"QD/DE	" (132kV, WZ-4)						
289	N1MQD359H		35 57,00		7.300	2	25.966	51.932	
290			3557.00		7.300	2	25.966	51,932	
291	N1MQD361H	L50x50x4H-E350A	3003.00		3.000	2	9.009	18.018	
292	N1MQD362	L45x30x4-E250A	1122.00		2.200	2	2.468	4.936	
293	N1MQD363H	L65x65x4H-E350A	3313.00		4.000	2	13.252	26.504	
294	N1MQD363X	H L65x65x4H-E350A	3313.00		4,000	. 2	13.252	26.504	
295	N1MQD364	L45x30x4-E250A	00,808		2.200	2	1.778	3.556	
2 96	N1MQD364X	L45x30x4-E250A	808.00		2.200	2	1.778	3.556	
297	N1MQD365H	L50x50x4H-E350A	1309,00		3.000	2	3.927	7,854	
298	N1MQD365X	H L50x50x4H-E350A	1309.00		3.000	2	3.927	7.854	
299	N1MQD366	L45x30x4-E250A	848.00		2.200	2	1.866	3.732	
300	N1MQD366X	L45x30x4-E250A	848.00		2.200	2	1.866	3.732	
301	N1MQD367H	6MM PLATE H-E350A	105.00 X	200.00	4 7.10 0	4	0.989	3.956	
302	N1MQD368H	L70x70x5H-E350A	3198,00		5.300	2	16,949	33.898	
303	N1MQD368XI	H L70x70x5H-E350A	3198.00		5.300	2	16.949	33.898	
304	N1MQD369H	L50x50x4H-E350A	2563.00		3.000	2	7.689	15.378	
305	N1MQD370H	6MM PLATE H-E350A	105.00 X	192.00	47,100	4.	0.950	3.800	
306	N1MQD372H	L50x50x4H-E350A	2680.00		3.000	2	8.040	16.080	
307	N1MQD372X	H L50x50x4H-E350A	2680.00		3,000	2	8,040	16.080	
308	N1MQD374H	6MM PLATE H-E350A	105.00 X	170.00	47.10 0	4	0.841	3.364	
309	N1MQD375H	L55x55x4H-E350A	219 3.00		3.300	2	7.237	14.474	
310	N1MQD376H	8MM PLATE H-E350A	130.00 X	360.00	62.800	1	2.939	2.939	
-311-	N1MQD377	L45x30x4-E250A	1127,00		2,200		2.479	4.958	
312	N1MQD378	5MM PLATE-E250A	110.00 X	150.00	39.250	2	0.648	1.296	
313	N1MQD379	5MM PLATE-E250A	110.00 X	160.00	39.250	2	0.691	1.382	
314	N1MQD380	L45x30x4-E250A	1134.00		2.200	2	2.495	4.990	
315	N1MQD381	5MM PLATE-E250A	110,00 X	150.00	39.250	2	0.648	1.296	
316	N1MQD382	5MM PLATE-E250A	110,00 X	170.00	39,250	2	0.734	1.468	
317	N1MQD383	L45x30x4-E250A	1066,00		2.200	2	2,345	4.690	
318	N1MQD384	5MM PLATE-E250A	110.00 X	160.00	39.250	2	0.691	1,382	
319	N1MQD385	5MM PLATE-E250A		150.00	39.250	2	0.648	1.296	
	N1MQD386	L45x30x4-E250A	1072,00		2,200	2	2.358	4.716	
		• •	. v i mie'a			-		4.1 10	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNA! - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

	oject	LE17D124 - Intra-Pith-Kathmandu 400/22	20 KV				· · · · · · · · · · · · · · · · · · ·		
	der Ref. g No.	- -				Date	27-08-3		
	<u> </u>	BOM/LE17D124/PQDBS//R-0	•			Page	11	of 17	
	Erection	Section	Length		Unit Wt.	Regd. U	Jnit/Ass.	Total	
<u> </u>	Mark		Size(In MM)	·	In Kgs	Qty.	Weight	Weight	
	N1MQD387	OR TOWER TYPE-"QD/DE" (132kV, WZ- 5MM PLATE-E250A		470.00	00.050	_			
	N1MQD388	5MM PLATE-E250A	110.00 X	170.00	39.250	2	0.734	1.468	
323			110.00 X	150.00	39.250	2	0.648	1.296	
	N1MQD400E		3065.00		6.800	2	20.842	41.684	
	N1MQD401LI	······································	3065,00		6.800	2	20.842	41.684	
	N1MQD401R		2936.00		3.700	2	10.863	21.726	
327		· · · · · · · · · · · · · · · · · · ·	2936,00		3,700	2	10.863	21.726	
	N1MQD402H		258.00 X	402.00	47.100	4	4.885	19.540	
		L45x45x4-E250A	1438.00		2.700	2	3.883	7.766	
329	, .,,		1438.00		2.700	2	3.883	7. 76 6	
330	V. V•	L45x30x4-E250A	603.00		2.200	2	1.327	2.654	
331		L45x30x4-E250A	603.00		2.200	2	1,327	2.654	
	N1MQD404AI		110.00 X	194.00	47.100	4	1.005	4.020	
	N1MQD405H	L50x50x4H-E350A	6325.00		3,000	1	18,975	18.975	
334	N1MQD405XI	***	6325.00		3,000	1	18,975	18.975	
	N1MQD405AF		3198.00		3.000	2	9.594	19.188	
		KH L50x50x4H-E350A	3198.00		3,000	2	9. 594	19.188	
337		L45x45x4-E250A	1231.00		2.700	2	3.324	6.648	
338	N1MQD406A	L45x45x4-E250A	1231.00		2.700	2	3.324	6,648	
339	N1MQD407	L45x45x4-E250A	1090.00		2.700	4	2.943	11.772	
340	N1MQD408H	6MM PLATE H-E350A	125.00 X	207.00	47. 100°	2	1,219	2.438	
341	N1MQD408AH	6MM PLATE H-E350A	163,00 X	265.00	47.100	2	2.034	4.068	
342	N1MQD409H	8MM PLATE H-E350A	170.00 X	206.00	62.800	4	2.199	8.796	
-343	N1MQD410H	L55x55x5H-E350A	5161.00		4.100	2	21,160	42.320	٠.
344	N1MQD410XF	L55x55x5H-E350A	5161.00		4.100	2	21.160	42,320	
345	N1MQD411	L45x45x4-E250A	1276.00		2.700	2	3.445	6.890	
346	N1MQD411A	L45x45x4-E250A	1276.00		2.700	2	3.445	6.890	
347	N1MQD412H	L45x45x4H-E350A	1411.00		2.700	2	3.810	7,620	
348	N1MQD412AH	L45x45x4H-E350A	1411.00		2.700	2	3.810	7,620	
349	N1MQD413H	L45x45x4H-E350A	1443.00		2.700	2	3.896	7,792	
350	N1MQD413AH	L45x45x4H-E350A	1443.00		2.700	2	3.896	7.792	
351	N1MQD414H	L70x70x5H-E350A	4755.00		5:300	2	25.202	50.404	
352	N1MQD415H	16MM PLATE H-E350A	292.00 X	320.00	125.600	4	11.736		
	•			22300	720.000	7	11/100	46.944	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

	roject	LE17D124 - Intra-Pith-Kathmandu 400/	220 KV					· · · · · · · · · · · · · · · · · · ·	
	Order Ref. Org No.	_				Date	27-08-		
	OM No.	BOM/LE17D124/PQDBS//R-0				Page	12	of 17	
	rl Erection lo Mark	Section	Length Size(In MM)	<u> </u>	Unit Wt. In Kgs	Reqd. U	Jnit/Ass. Weight	Total Weight	
		OR TOWER TYPE-"QD/DE" (132kV, W.	Z-4)		<u> </u>		- r 41811¢	THOIGHT.	
-35	3 N1MQD415A	ALH L70x70x5H-E350A	225.00		5.300	2	1.193	2.386	
35	4 N1MQD415#	ARH 1.70x70x5H-E350A	225.00		5.300	2	1.193 .	2,386	
35	5 N1MQD416H	H L60x60x4H-E350A	3121.00		3.700	2	11.548	23.096	
35	6 N1MQD416X	KH L60x60x4H-E350A	3121.00		3.700	2	11.548	23,096	
35	7 N1MQD417F	6MM PLATE H-E350A	130.00 X	210.00	47. 100	· 2	1.286	2.572	
35	8 N1MQD418H	6MM PLATE H-E350A	115.00 X	190,00	47,100	2	1.029	2.058	
35	9 N1MQD419	6MM/PLATE-E250A	100.00 X	120.00	47.100	4	:0 .5 65	2.260	
36	0 N1MQD420	L70x70x5-E250A	5282.00		5.300	Ż	27.995	55,990	
36	1 N1MQD420X	K L70x70x5-E250A	5282.00		5.300	2	27.995	55,990	
36	2 N1MQD421	L45x45x4-E250A	1405.00		2.700	2	3.794	7.588	
36	3 N1MQD422	6MM PLATE-E250A	130.00 X	130.00	47.100	2	0.796	1.592	
36	4 N1MQD423	6MM PLATE-E250A	100.00 X	130.00	47,100	4	0.612	2.448	
36	5 N1MQD440L	H L70x70x6H-E350A	3035.00		6.300	2	19 .121	38.242	
36	6 N1MQD440R	RH L70x70x6H-E350A	3035.00		6.300	2	19,121	38.242	
36	7 N1MQD441L	H L55x55x4H-E350A	2956.00		3.300	2	9.755	19.510	
36	8 N1MQD441R	KH L55x55x4H-E350A	2956.00		3.300	2	9.755	19.510	
36	9 N1MQD442H	6MM PLATE H-E350A	255.00 X	316.00	47.100	4	3.795	15.180	
37	N1MQD443L	L45x45x4-E250A	1448.00		2.700	2	3,910	7.820	
37	N1MQD443R	L45x45x4-E250A	1448.00		2.700	2	3.910	7.820	
37:	N1MQD444L	L45x30x4-E250A	605.00		2.200	2	1.331	2.662	
37	N1MQD444R	L45x30x4-E250A	605.00		2.200	2	1.331	2.662	
374	1 N1MQD445H	6MM PLATE H-E350A	110.00 X	194.00	47,100	4	1.005	4.020	
379	5 N1MQD446H	L45x45x4H-E350A	5718.00		2.700	1	15.439	15.439	
376	N1MQD446XI	H L45x45x4H-E350A	5718.00		2.700	1	15.439	15.439	
377	N1MQD447H	L45x45x4H-E350A	2880.00		2,700	2	7.776	15.552	
378	N1MQD447XI	H L45x45x4H-E350A	2880.00		2.700	2	7.776	15.552	
379	N1MQD448H	6MM PLATE H-E350A	105.00 X	116,00	47.100	4	0.574	2.296	
380	N1MQD449H	6MM PLATE H-E350A	105.00 X	186.00	47.100	2	0.920	1.840	
3 81	N1MQD450H	6MM PLATE H-E350A	154.00 X	248.00	47.100	2	1.799	3.598	
382	N1MQD451日	6MM PLATE H-E350A	150.00 X		47:100	4	1.427	5.708	
383	N1MQD452	L60x60x6-E250A	4814.00		4.500	2	21.663	43.326	
384	N1MQD452X	L60x60x5-E250A	4814.00		4.500	. 2	21.663	43.326	
			. =			e,	_ 1.000	70.040	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNA! - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

	oject der Ref.	LE17D124 - Intra-Pith-Kathmandu 40	00/220 KV		 		4		
	g No.	- -				Date	27-08-		
		BOM/LE17D124/PQDBS//R-0	<u>-</u>			Page	13	of 17	
	l Erection Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Regd. I	Jnit/Ass. Weight	Total Weight	
<u>B</u> /	SIC BODY F	OR TOWER TYPE-"QD/DE" (132kV,		·		*****	(1 a.g.,ir	17 019171	
385	N1MQD453	L45x45x4-E250A	1293.00		2.700	2	3.491	6.982	
386	N1MQD453A	L45x45x4-E250A	1293.00		2.700	2	3.491	6.982	
387	N1MQD454	L45x45x4-E250A	1363.00		2.700	2	3.680	7.360	
388	N1MQD454A	L45x45x4-E250A	1363,00		2.700	2	3.680	7.360	
389	N1MQD455	L45x45x4-E250A	1314.00		2.700	2	3.548	7.096	
390	N1MQD455A	L45x45x4-E250A	1314.00		2.700	.2	3.548	7.096	
391	N1MQD456H	L70x70x5H-E350A	4319.00		5.300	.2	22.891	45.782	
392	N1MQD457H	16MM PLATE H-E350A	292.00 X	320.00	125.600	4	11.736	46.944	
393			225.00		5.300	2	1.193	2.386	
394	N1MQD457AI	RH L70x70x5H-E350A	225.00		5.300	2	1,193	2.386	٠.
395	N1MQD458	6MM PLATE-E250A	130.00 X	130.00	47.100	2	0.796	1.592	
396	N1MQD459H	L65x65x4H-E350A	4906.00		4.000	2	19.624	39.248	
397	N1MQD459XI	H L65x65x4H-E350A	4906.00		4.000	2	19.624	39.248	
398	N1MQD459AI	H 6MM PLATE H-E350A	97,00 X	115,00	47.100	4.	0.525	2.100	
399	N1MQD459B	H 6MM PLATE H-E350A	97.00 X	122.00	47.100	4	0.557	2.228	
400	N1MQD460	L45x45x4-E250A	1436.00		2.700	Ź	3.877	7.754	
401	N1MQD480LH	H L70x70x5H-E350A	3056.00		5.300	2	16. 197	32.394	
402	N1MQD480R	H L70x70x5H-E35 0 A	3056.00		5.300	2	16.197	32,394	
403	N1MQD481LF	L55x55x4H-E350A	2899.00		3.300	2.	9.567	19.134	
404	N1MQD481RI	H L55x55x4H-E350A	2899.00		3.300	2	9:567	19.134	
405	N1MQD482H	6MM PLATE H-E350A	189,00 X	289,00	47,100	4	2.573	10.292	
406	N1MQD483L	L45x45x4-E250A	1424.00		2.700	2	3.845	7.690	
407	N1MQD483R	L45x45x4-E250A	1424.00	· · · · · ·	2.700	2	3.845	7,690	
408	N1MQD484L	L45x30x4-E250A	516,00		2.200	2	1,135	2.270	
409	N1MQD484R	L45x30x4-E250A	516.00		2.200	2	1.135	2.270	
410	N1MQD484AH	6MM PLATE H-E350A	110.00 X	223.00	47.100	4	1.155	4.620	
411	N1MQD485H	L60x60x4H-E350A	5109.00		3.700	1	18.903	18.903	
412	N1MQD485XH	L60x60x4H-E350A	5109.00		3,700	1	18.903	18,903	
413	N1MQD486H	6MM PLATE H-E350A	105.00 X	124.00	47.100	4	0.613	2,452	
4 14	N1MQD487H	6MM PLATE H-E350A	140.00 X	174.00	47.100	4	1.147	4.588	
415.	N1MQD488	L70x70x5-E250A	4488.00		5.300	2	23.786	47.572	
416	N1MQD488X	L70x70x5-E250A	4488.00		5.300	2	23,786	47.572	
						-		· · • • • •	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

	oject der Ref.	LE17D124 - Intra-Pith-Kathmandu 400/22	0 KV			Date	27-08	2010
	g No.	-	-			Page	14	of 17
, ()		BOM/LE17D124/PQDBS//R-0	···					··
<u>No</u>	I Erection Mark	Section	Length Size(in MM)	<u> </u>	Unit Wt. In Kgs	Reqd. I	Jnit/Ass. Weight	Total Weight
		OR TOWER TYPE-"QD/DE" (132kV, WZ-4	<u>4)</u>	<u> </u>	<u> </u>	 -	· · · ·	 - V ·
	' N1MQD489H	·	1899.00		2.700	2	5.127	10.254
418		•	1899,00		2.700	2	5.127	10.254
419			3879.00		5.300	2	20.559	41.118
420			292,00 X	320.00	125,600	4	11.736	4 6.944
421		, , ,,	225.00		5.300	2	1.193	2.386
422		RH L70x70x5H-E350A	225.00		5.300	2	1.193	2.386
423	N1MQD491	L65x65x4-E250A	4520,00		4.000	2	18.080	36.160
424	N1MQD491X	L65x65x4-E250A	4520.00		4.000	2	18.080	36.160
425	N1MQD492	6MM PLATE-E250A	97.00 X	125.00	47.100	4	0.571	2.284
426	N1MQD493	6MM PLATE-E250A	97.00 X	125.00	47.100	4.	0.571	2.284
427	N1MQD494H	L45x45x4H-E350A	1401.00		2.700	2	3.783	7.566
428	N1MQD495H	6MM PLATE H-E350A	130.00 X	130.00	47.100	2	0.796	1.592
429	N1MQD510LH	l L70x70x6H-E350A	3055.00		6.300	2	19.247	38.494
430	N1MQD510RI	H L70x70x6H-E350A	3055.00		6,300	2	19.247	38.494
431	N1MQD511LF	L55x55x4H-E350A	2921.00		3.300	2	9.639	19.278
432	N1MQD511RI	H L55x55x4H-E350A	2921.00	•	3.300	2	9.639	19,278
433	N1MQD512H	6MM PLATE H-E350A	200.00 X	327,00	47.100	4	3.080	12.320
434	N1MQD513L	L45x45x4-E250A	1435.00		2.700	2	3.875	7.750
435	N1MQD513R	L45x45x4-E250A	1435.00		2.700	2	3.875	7.750
436	N1MQD514L	L45x30x4-E250A	520.00		2.200	2	1.144	2.288
437	N1MQD514R	L45x30x4-E250A	520.00		2,200	2	1.144	2.288
438	N1MQD515H	6MM PLÄTE H-E350A	110.00 X	223.00	47.100	4	1.155	4.620
439	N1MQD516H	L60x60x4H-E350A	4510,00		3.700	1	16.687	16.687
440	N1MQD516XH	L60x60x4H-E350A	4510.00		3,700	1	16.687	16.687
441	N1MQD517H	6MM PLATE H-E350A	110.00 X	127.00	47.100	4	0.658	2.632
442	N1MQD518H	6MM PLÁTE H-E350A	144.00 X	177.00	47,100	4	1.200	4.800
443	N1MQD519	L70x70x5-E250A	4147.00		5.300	2	21,979	43.958
444	N1MQD519X	L70x70x5-E250A	4147.00		5.300	2	21.979	43,958
445	N1MQD520H	L45x45x4H-E350A	1678,00		2.700	2	4.531	9,062
446	N1MQD520AH	L45x45x4H-E350A	1678.00		2.700	2	4.531	9.062
447	N1MQD521H	L70x70x5H-Ë350A	3434.00		5.300	2	18,200	36.400
448	N1MQD522H	16MM PLATE H-E350A	292,00 X	320.00	125.600	4	11.736	·
	,				120,000	7	11.730	46,944

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAL - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

		oject L der Ref	E17D124 - Intra-Pith-Kathmandu 400/220	KV	···•·		··· .		"
		der Ker		 .			Date	27-08-3	
, <u></u>		-	OM/LE17D124/PQDBS//R-0				Page	,1 5 .	of 17
(;: _		Erection Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Reqd. U	Jnit/Ass. Weight	Total Weight
			R TOWER TYPE-"QD/DE" (132kV, WZ-4	1					
•	449		1 L70x70x5H-E350A	225.00		5.300	2	1.193	2.386
4	450		H L70x70x5H-E350A	225,00		5,300	2	1.193	2.386
4	451	N1MQD523H	L60x60x4H-E350A	41 84. 00		3.700	2	15.481	30.962
4	452	N1MQD523XH	L60x60x4H-E350A	4184.00		3.700	.2	15.481	30.962
4	453	N1MQD524H	6MM PLATE H-E350A	97.00 X	120.00	47.100	4	0.548	2.192
Ž	454	N1MQD525H	6MM PLATE H-E350A	97,00 X	130.00	47.100	4	0.594	2.376
4	455	N1MQD540LH	L70x70x5H-E350A	3056.00		5.300	.2	16.197	32,394
.4	456	N1MQD540RH	L70x70x5H-E350A	3056.00		5.300	2	16.197	32.3 9 4
4	157	N1MQD541LH	L55x55x4H-E350A	2942.00		3.300	2	9.709	19.418
4	15 8	N1MOD541RH	L55x55x4H-E350A	2942.00		3.300	2	9.709	19.418
4	1 59	N1MQD542H	6MM PLATE H-E350A	200.00 X	297.00	47.100	4	2.798:	11.192
4	160	N1MQD543L	L45x45x4-E250A	1445.00		2.700	2	3.902	7.804
4	161	N1MQD543R	L45x45x4-E250A	1445.00		2.700	2	3.902	7.804
4	62	N1MQD544L	L45x30x4-E250A	521.0 0		2.200	2	1.146	2.292
4	163	N1MQD544R	L45x30x4-E250A	521.00		2,200	2	1.146	2.292
4	164	N1MQD544AH	6MM PLATE H-E350A	110.00 X	224.00	47.100	4	1.161	4.644
4	165	N1MQD545H	L55x55x4H-E350A	3907.00		3.300	1	12.893	12.893
4	66	N1MQD545XH	L55x55x4H-E350A	3907,00		3.300	1	12.893	12.893
4	67	N1MQD546H	6MM PLATE H-E350A	154.00 X	163.00	47.100	4	1.182	4.728
4	68	N1MQD547	L65x65x5-E250A	3819.00		4.900	.2	18.713	37.426
4	69	N1MQD547X	L65x65x5-E250A	3819.00		4.900	2	18.713	37.426
4	70	N1MQD548H	L45x45x4H-E350A	1467.00		2.700	2	3.961	7.922
4	71	N1MQD548AH	L45x45x4H-E350A	1467:00		2.700	2	3.961	7.922
4	72	N1MQD549H	L70x70x5H-E350A	2993.00		5.300	2	15:863	31.726
4	73	N1MQD550H	16MM PLATE H-E350A	301.00 X	320.00	125.600	4	12.098	48,392
4	74	N1MQD550ALH	L70x70x5H-E350A	225.00		5.300	2	1.193	2.386
4	75	N1MQD550ARH	L70x70x5H-E350A	225.00		5.300	2	1.193	2.386
4	76	N1MQD551H	L50x50x5H-E350A	3871.00		3.800	2	14.710	29.420
4	77	N1MQD551XH	L50x50x5H-E350A	3871.00		3.800	2	14.710	29.420
4	78	N1MQD552H	6MM PLATE H-E350A		115.00	47.100	4	0.525	2.100
4	79	N1MQD553H	6MM PLATE H-E350A	97.00 X	125.00	47.100	4	0.571	2.100
4	80	N1MQD570LH	L70x70x5H-E350A	3101.00		5.300	~ 2	16.435	32.870
				,		0.000	_	10.703	02.0 į 0

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Project	LE17D124 - Intra-Pith-Kathmandu 4	00/220 KV					
Order Ref. Drg No.	•				Date	27-08-	
BOM No.	- BOM/LE17D124/PQDBS//R-0	-			Page	16	of 17 -
Srl Erection No Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Regd. L	Jnit/Ass. Weight	Total Weight
	FOR TOWER TYPE-"QD/DE" (132kV,	WZ-4)			•		· 1
481 N1MQD570	DRH L70x70x5H-E350A	3101.00		5.300	2	16.435	32.870
482 N1MQD571	ILH L55x55x4H-E350A	3171.00		3.300	2	10.464	20.928
483 N1MQD571	RH L55x55x4H-E350A	3171.00		3.300	2	10.464	20.928
484 N1MQD572	2H 6MM PLATE H-E350A	210.00 X 2	257.00	47.100	4	2.542	10.168
485 N1MQD573	3L L45x45x4-E250A	1546.00		2,700	2	4.174	8.348
486 N1MQD573	BR L45x45x4-E250A	1546.00		2.700	2	4.174	8.348
487 N1MQD574	L L45x30x4-E250A	748.00		2.200	2	1.646	3.292
488 N1MQD574	IR L45x30x4-E250A	748,00		2.200	2	1.646	3.292
489 N1MQD574	IAH 6MM PLATE H-E350A	105.00 X 1	59.00	47.100	4	0.786	3,144
490 N1MQD575	5H. L50x50x4H-E350A	3280,00		3.000	1	9.840	9.840
491 N1MQD575	XH L50x50x4H-E350A	3280.00		3,000	1	9.840	9.840
492 N1MQD577	6MM PLATE-E250A	171.00 X 1	74.00	47.100	4	1.401	5.604
493 N1MQD578	B L65x65x4-E250A	3517.00		4.000	2	14.068	28.136
494 N1MQD578	X L65x65x4-E250A	3517.00		4.000	2	14.068	28.136
495 N1MQD579	L45x45x4-E250A	1251.00		2.700	2	3.378	6.756
496 N1MQD579	A L45x45x4-E250A	1251.00		2.700	2	3.378	6.756
497 N1MQD580	H L70x70x5H-E350A	2553.00		5:300	2	13.531	27.062
498 N1MQD581	H 16MM PLATE H-E350A	301.00 X 3	20.00	125,600	4	12.098	48.392
499 N1MQD581	ALH L70x70x5H-E350A	225.00		5.300	.2	1.193	2.386
500 N1MQD581	ARH L70x70x5H-E350A	225.00		5.300	2	1.193	2.386
501 N1MQD582	H L45x45x4H-E350A	2985.00		2.700	1	8.060	8.060
502 N1MQD582	XH L45x45x4H-E350A	2985.00		2.700	1	8.060	8.060
503 N1MQD583	H	3765.00		3.000	· · · · · 2:·	11.295	22:590
504 N1MQD583	XH L50x50x4H-E350A	3765.00		3:000	2	11.295	22.590
505 N1MQD584	H 6MM PLATE H-E350A	97.00 X 1	30.00	47.100	4	0.594	2.376
506 N1MQD585	H 6MM PLATE H-E350A		32.00	47.100	4	0.603	2.412
		·	•		•	_,,,,,	

TOTAL WEIGHT:

*** - Item welded with another item

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089. INDIA. PHONE : 044 - 22492747 (20 LINES) FAX : 044 - 22494172

Project Order Ref.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV		Date	27-0	8-201	R
Drg No.	W ·		Page	1		2
BOM No.	BOM/LE17D124/PQDBS/P/R-0					
Srl No	Section Invloved	Section Weight				
BASIC BO	DY FOR TOWER TYPE-"QD/DE" (132kV, WZ-4)					
1	L45x30x4-E250A	363,418				
2	L100x100x7-E250A	213.744				
3	L45x45x4-E250A	570.874				
4	L50x50x4-E250A	58.032				
5	L60x60x4-E250A	73,200				
6.	L60x60x5-E250A	86.652				
7 ·	L65x65x5-E250A	110.466				
8	L65x65x4-E250A	230.000				
9	L70x70x5-E250A	420,640				
10	L75x75x6-E250A	236.298				
11	L80x80x6-E250A	63.204				
12	L90x90x6-E250A	159.048	٠			
13	L45x45x4H-E350A	264.870				
14	L50x50x5H-E350A	58,840				
15	L55x55x4H-E350A	347.790				
16	L55x55x5H-E350A	84.640				
17	L60x60x4H-E350A	333.024				
18	L60x60x5H-E350A	158.616				
19	L65x65x4H-E350A	150.320				
20	L65x65x5H-E350A	72.032				
21	L70x70x5H-E350A	.530.300				
22	L70x70x6H-E350A	262.716				
23	L75x75x6H-E350A	452.032				
24	L80x80x6H-E350A	339.072				
25	L90x90x6H-E350A	791.124				
26	L90x90x7H-E350A	504.920				eservice and passes
27	L100x100x6H-E350A	302.132				
28	L100x100x7H-E350A	346,532				
29	L100x100x8H-E350A	345.672				
30	L110x110x8H-E350A	486.688				
31	L120x120x8H-E350A	22.344				
32	L130x130x10H-E350A	37.192				
33	L130x130x12H-E350A	379.384				
34	L150x150x12H-E350A	184.332				
35	L150x150x14H-E350A	504.000				

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAL - 600 089. INDIA. PHONE : 044 - 22492747 (20 LINES) FAX : 044 - 22494172

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV - - BOM/LE17D124/PQDBS/P/R-0		Date Page	27-0 2)8-201 of	8 2
Srl No	Section Invloved	Section Weight				
BASIC BO	DY FOR TOWER TYPE-"QD/DE" (132kV, WZ-4)					
36	L150x150x18H-E350A	641.600				
37	L200x200x15H-E350A	1775.300				
38	L50x50x4H-E350A	378.270				
39	5MM PLATE H-E350A	44.280				
40	6MM PLATE H-E350A	213.284				
4 1	8MM PLATE H-E350A	166.635				
42	10MM PLATE H-E350A	216.576				
43	16MM PLATE H-E350A	284.560				
44	2MM PLATE-E250A	3.072				
45	3MM PLATE-E250A	4.336				
46	4MM PLATE-E250A	9.072				
47	5MM PLATE-E250A	56.584				
48	6MM PLATE-E250A	25.240				
49	8MM PLATE-E250Å	11.372				•
	Total	13374.329				

ECC CONSTRUCTION DIVISION

TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAL -600 089. INDIA,

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

	ject	LE17D124 - Intra-Pith-Kathmandu 400/220	KV				
Ord Drg	er Ref.	-			Date	18-12-2	018
-	M.No.	BOM/LE17D124/PQDBB/SQDBB/R-0	-		Page	. 1	of 1
	Erection Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. Qty.	Unit/Ass. Weight	Total Weight
BOL	TS & NUTS	OF BASIC BODY FOR TOWER TYPE-"QD/	DE" (132kV, WZ-4)				
1	SQDBB1	M16x35MM LONG(IS:12427)		0.119	1140	0.119	135.660
2	SQDBB2	M16x40MM LONG (IS:12427)		0.126	732	0.126	92.232
3	SQDBB3	M16x45MM LONG (IS(12427)		0.134	787	0.134	105,458
4	SQDB84	M16x50MM LONG (IS:12427)		0,142	414	0.142	58.788
5	SQDBB5	M46x55MM LONG (IS:12427)		0.150	266	0.150	39.900
6	SQDBB6	M16x60MM LONG (IS:12427)		0.158	78	0.158	12.324
7	SQDBB7	M16x65MM LONG (IS:12427)		0.164	478	0.164	78:392
8	SQDB88	M16x70MM LONG (IS:12427)		0.173	8	0.173	1.384
9	SQDBB9	M16x3.5mm SPR, WSR-IS3063		0.009	3903	0.009	35,127
10 .	SQDBB10	M16x175LG SB (500D) 2N+1SP		0.423	160	0.423	67:680

*** - Item welded with another item

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 800 089, INDIA.

PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV - - BOM/LE17D124/PQDBB/SQDBB/R-0		Date Page	18-12 1	2-2018 of	1
Srl No	Section Invloved	Section Weight				
BOLTS & N	UTS OF BASIC BODY FOR TOWER TYPE-"QD/DE" (132kV, WZ-4)	·			····	·
1	M16x3.5mm SPR, WSR-IS3063	35.127				
2	M16x175LG SB (500D) 2N+1SP	67.680				
3	M16x35MM LONG(IS:12427)	135.660				
4	M16x40MM LONG (IS:12427)	92.232				
5	M16x45MM LONG (IS:12427)	105,458				
6	M16x50MM LONG (IS:12427)	58.788				
7	M16x55MM LONG (IS:12427)	39.900				
8	M16x60MM LONG (IS/12427)	12.324				
9	M16x65MM LONG (IS:12427)	78,392				
10	M16x70MM LONG (IS:12427)	1.384				
	Total	626.945	-			

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 - - BOM/LE17D124/PQDBB/SQDBW/R-0	0 KV -		Date Page	27-08-2 1	2 01 8 of 1
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. I Qty.	Jnit/Ass. Weight	Total Weight
PACK WASHE	ERS OF BASIC BODY FOR TOWER TYPE-	"QD/DE" (132kV, WZ-4)				
1 SQDBW1	M16x4MM ROUND P.WASHER IS2016		0.014	34	0.014	.476
2 SQDBW2	M16x5MM ROUND P.WASHER IS2016		0.018	36	0.018	.648
3 SQDBW3	M16x6MM ROUND P.WASHER IS2016		0.021	150	0.021	3.150
4 SQDBW4	M16x8MM ROUND P,WASHER IS2016		0.028	66	0.028	1.848
5 SQDBW5	M16x10MM ROUND P.WASHER IS2016	· .	0.036	104	0.036	3.744
	•					
		·	TOTAL	NEIGHT	:	9.866

*** - Item welded with another item

MOUNT POONAMALLE ROAD, PÓ BOX : 979 CHENNAI - 600 089. INDIA. PHONE : 044 - 22492747 (20 LINES) FAX : 044 - 22494172

Project Order Ro Drg No. BOM No	<u>-</u>	Date Page	27- 0	08-2011 of	8	
Srl No	Section Invloved	Section Weight				
PACK W	ASHERS OF BASIC BODY FOR TOWER TYPE-"QD/DE"	(132kV, WZ-4)				
· 1	M16x4MM ROUND P.WASHER IS2016	.476				
2	M16x5MM ROUND P.WASHER IS2016	.648			•	
, 3 .	M16x6MM ROUND P.WASHER IS2016	3.150				
4	M16x8MM ROUND P.WASHER IS2016	1.848				
5	M16x10MM ROUND P.WASHER IS2016	3.744				
	Total	9.866				

L&T Construction

Power Transmission & Distribution

CLIENT:

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

PROJECT:

TAMAKOSHI - KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT -400/220 KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE

LOA No.: 073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4M-GA-0401

BOM No.: BOM/LE17D124/132kV/QD/001 -

NO OF SHEETS:

4 .

CAT-I

STUB & CLEATS FOR TOWER TYPE - "QD/DE" (132kV, WZ-4)

Approved / Released For Fabrication subject to incorporation of comments, modification BILL OF MATERIAL To be resubmitted for approval after incorporating as noted. Revised drawings/designs required

Nepal Electricity Authority Tamakoshi-Kathmandu 220/400 kv /Transmission Line Project

Date: 2518 18/13

Approved By: Q

N.

WEIGHT OF STRUCTURE	·
HT MEMBERS: BOM/LE17D124/PQDSC/SQDSC/R-0 ~	755.208
MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ETC.	-
WEIGHT OF BOLTS & NUTS, SPRING WASHERS: BOM/LE17D124/PQDSB/SQDSB/R-0 ~	9.664
निर्माण / हेतु अनुमोदित / जारी TOTAL WEIGHT OF STRUCTURE:	764.872 Kgs

फंसीकंशन ॥ फंबीकेशन 4 AT

6 6 18

वशर्ले दी ग सम्भिलित किया जाए। कृपया आशोधित दस्तावेज अनुमोदनार्थ प्रस्तुत करें। ॥। टिप्पणियों सम्मिलित कर पुनः अनुमोदनार्थ

DE (पदनाम)

पावर ग्रिड कॅारपोरेशन ऑफ इंडिया लि० अमियांत्रिकी (टी॰ एल॰) ग्डगॉव, हरियाणा

III. हिष्णियो सम्मिलित कर पुत्र अनुसार । प्रकृति करें।
IV. सूचनार्थ एवं रिकार्ड हेतु। CAT 1 subject to type
V. अनुमादित नहीं।
V. अनुमादित नहीं।

					91/12	Da/	1 00
0	16.03.18	FIRST SUBMISSION FOR APPROVAL				BSR	CSR
REV.	DATE	DESCRIPTION				REVED.	APPD.
PREPARED BY		CHECKED BY	REVIEWED BY	APPROVE	D BY	D.	ATE
ALEX		PU	BSR	CSF	R 16		03.18

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

OM/LE17D124/PQDSC/SQDSC/R-0 Section	<u>-</u>		Date Page	16-03- 1	of 1
Section	•				
Occiden	Length Size(In MM)	Unit Wt. In Kgs		Unit/Ass. Weight	Total Weight
FOR TOWER TYPE-"QD/DE" (132kV,	WZ-4)				
L200x200x15H-E350A	3749.00	45.600	4	170.9 54	683.816
L100x100x6H-E350A	205.00	9.200	8	1.886	15.088
L100x100x6H-E350A	205.00	9.200	8	1.886	15.088
L100x100x6H-E350A	280.00	9.200	16	2.576	41.216
	_		UEIOU IS	<u>.</u>	755.208
	L100x100x6H-E350A	L100x100x6H-E350A 205.00	L100x100x6H-E350A 205.00 9.200 L100x100x6H-E350A 280.00 9.200	L100x100x6H-E350A 205.00 9.200 8 L100x100x6H-E350A 280.00 9.200 16	L100x100x6H-E350A 205.00 9.200 8 1.886

*- Item welded with another item

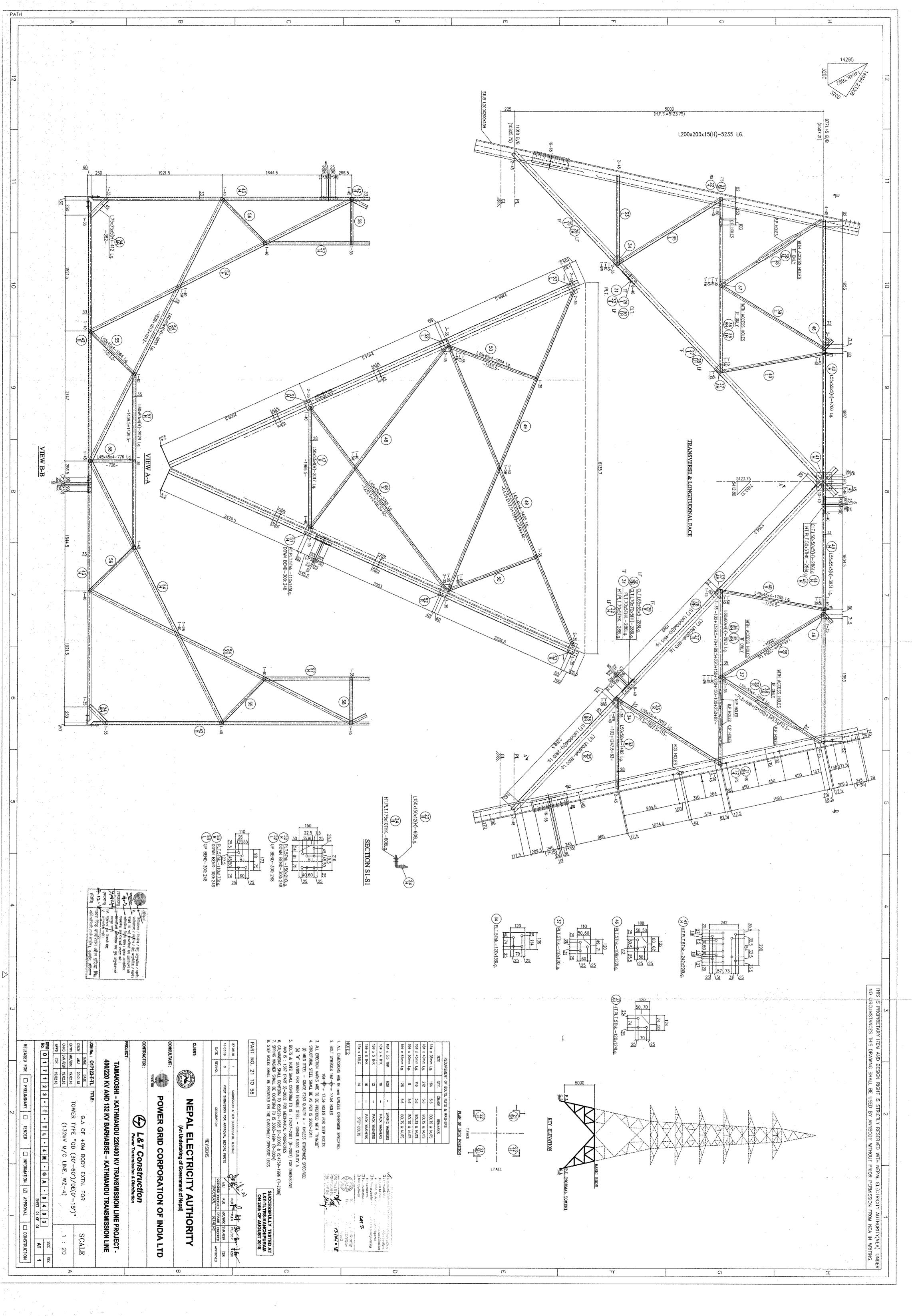
MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNA! - 600 089. INDIA. PHONE : 044 - 22492747 (20 LINES) FAX : 044 - 22494172

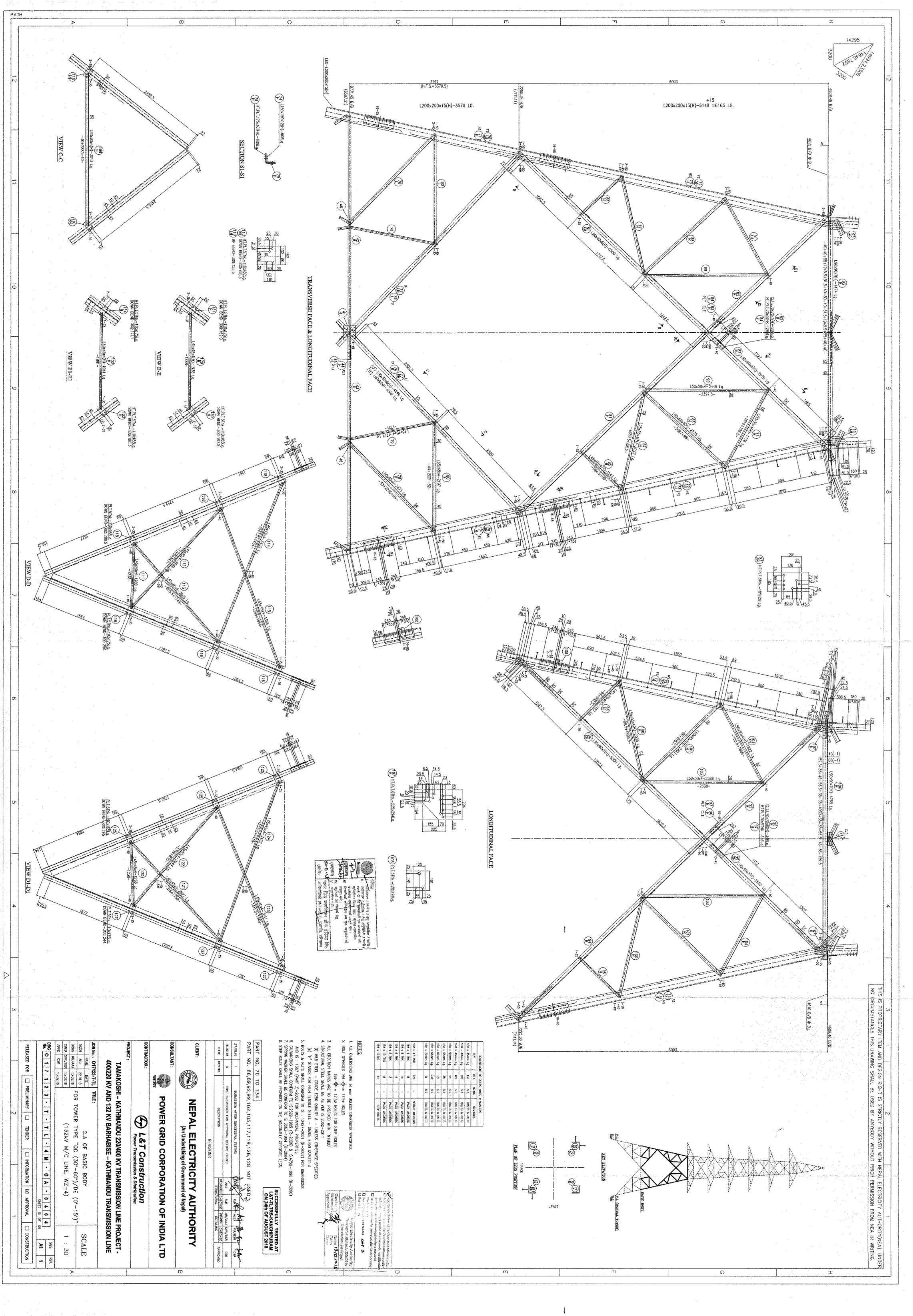
Project	LE17D124 - Intra-Pith-Kathmandu 400/220 KV		
Order Ref.	-	Date	16-03-2018
Drg No.	+	Page	: 1 of 1
BOM No.	BOM/LE17D124/PQDSC/SQDSC/R-0		
Sri S No	Section Invioved	Section Weight	
STUB & CLE	ATS FOR TOWER TYPE-"QD/DE" (132kV, WZ-4)		
1 L	_100x100x6H-E350A	71.392	
2 L	_200x200x15H-E350A	683.816	
	Total	755.208	

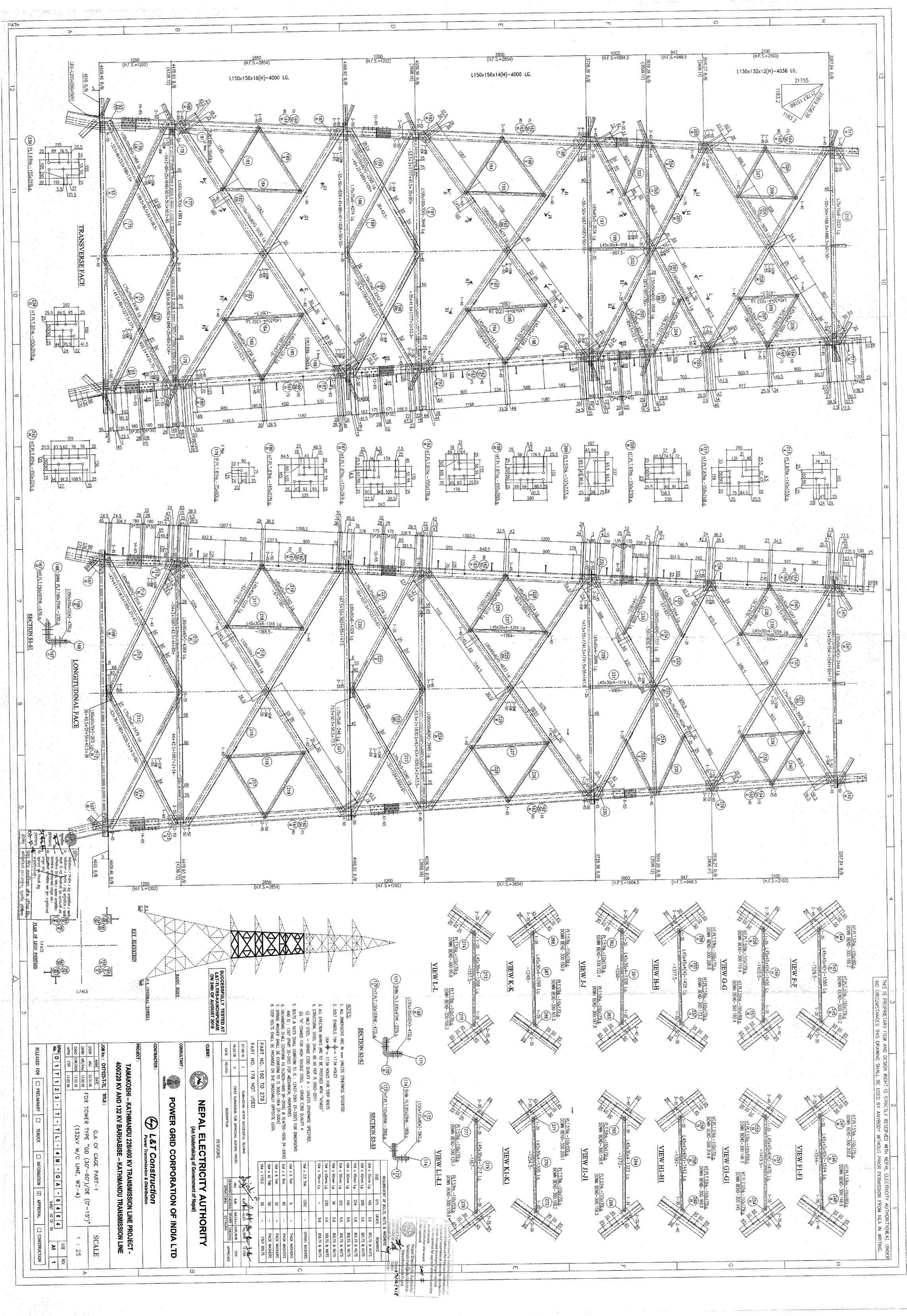
ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

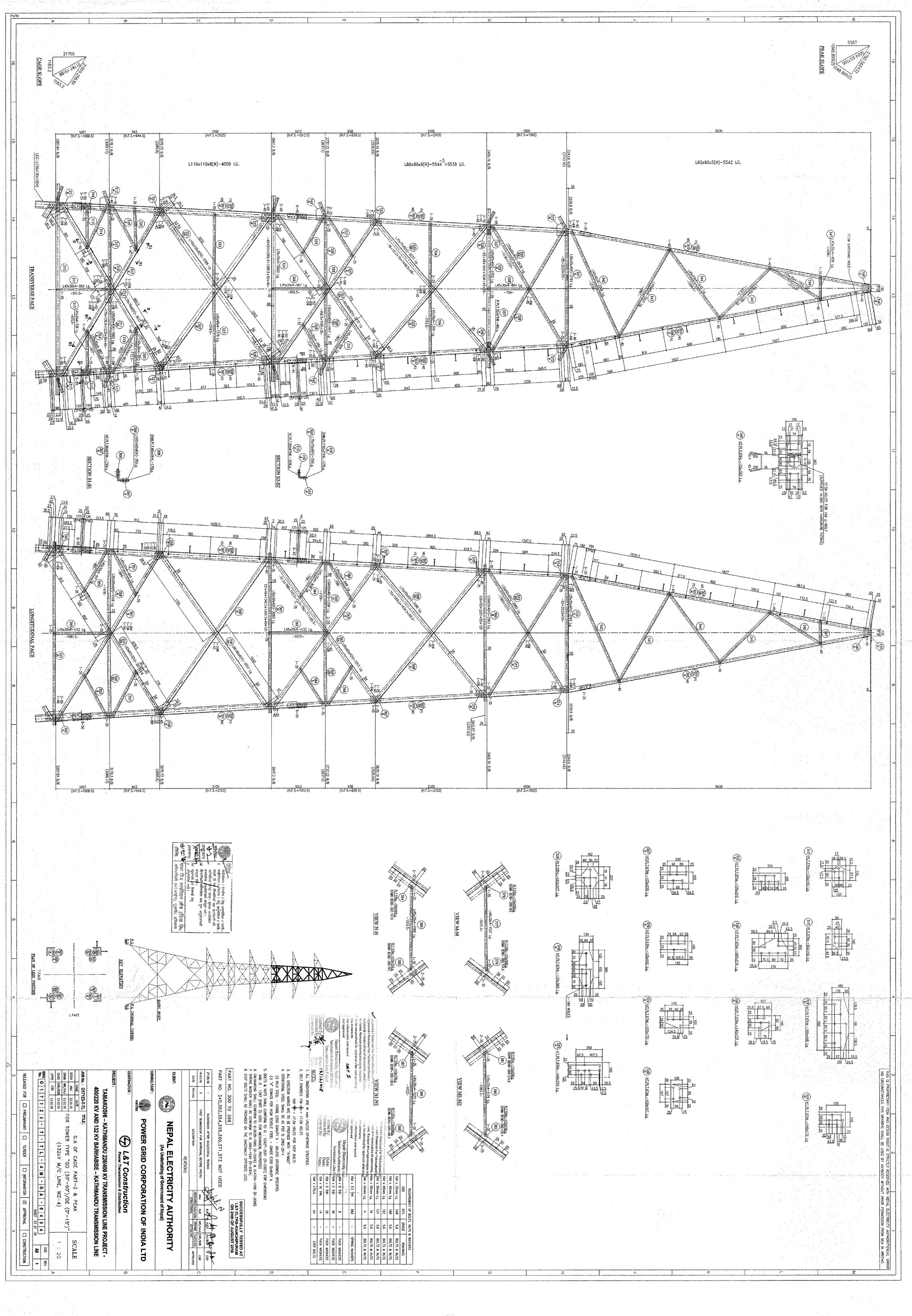
MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA.

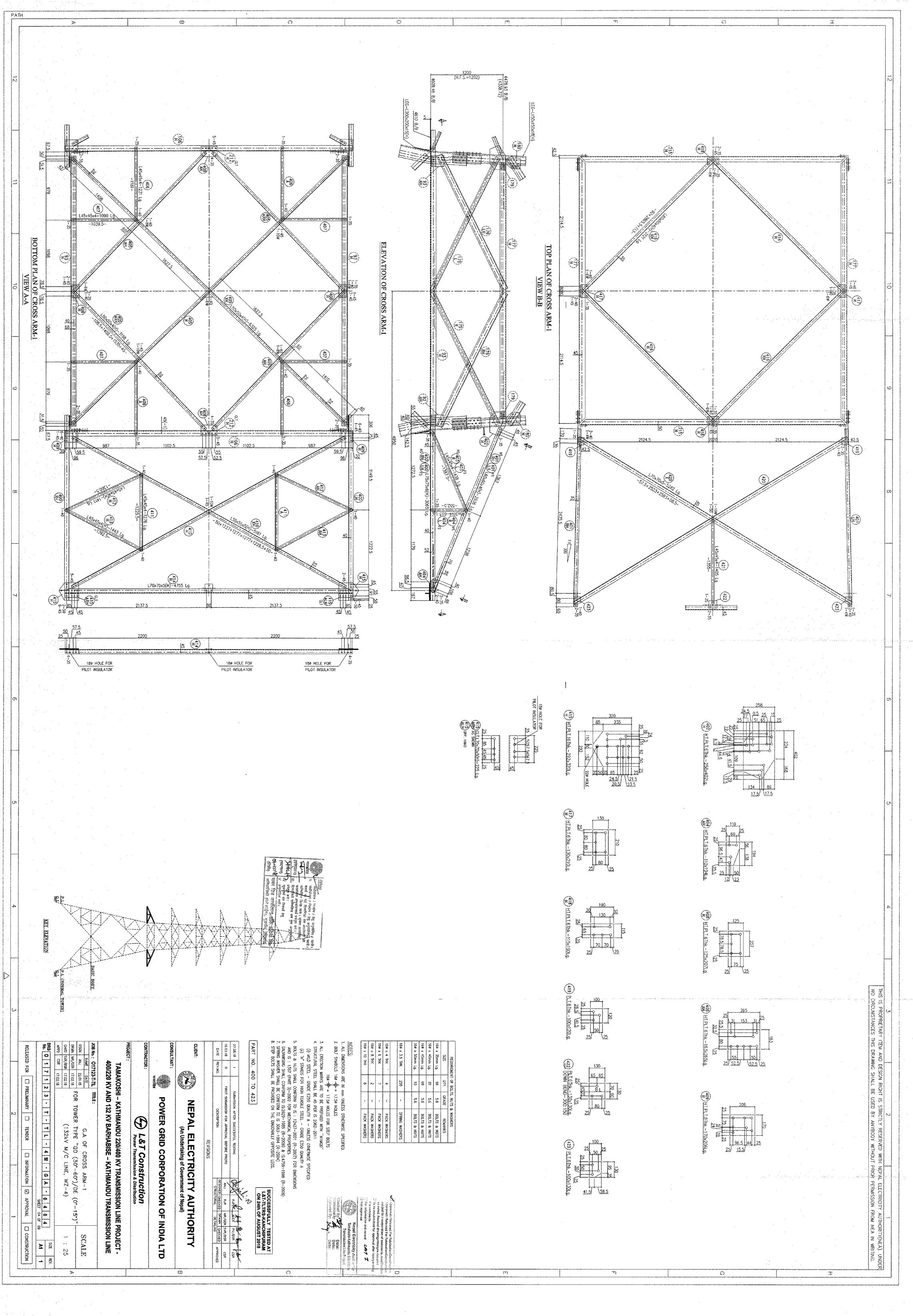
PHONE: 044 - 22704000 FAX: 044 - 22705494


Project Order Ref, Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/22 - - BOM/LE17D124/PQDSB/SQDSB/R-0	0 KV -		Date 16-03 Page 1	3-2018 of 1
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. Unit/Ass. Qty. Weight	
BOLTS & NU	IS OF STUB & CLEATS FOR TOWER TYP	E-"QD/DE" (132kV, WZ-4	9)		
1 SQDSB1	M16x50MM LONG (IS:12427) -		0.142	64 0.142	9.088
2 SQDSB2	M16x3.5mm SPR, WSR-IS3063 <		0.009	64 - 0.009	.576
_)					
			TOTAL WEIGHT:		9.664


^{*** -} Item welded with another item




MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089. INDIA. PHONE : 044 - 22492747 (20 LINES) FAX : 044 - 22494172


Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV - BOM/LE17D124/PQDSB/SQDSB/R-0	Date Page	,,-
Srl 8 No	Section Invloved	Section Weight	., ,
BOLTS & NU	ITS OF STUB & CLEATS FOR TOWER TYPE-"QD/D	DE" (132kV. WZ-4)	
	M16x3.5mm SPR. WSR-JS3063	.576	
2 <u>N</u>	M16x50MM LONG (IS:12427)	9.088	
	Total	9.664	

TOWER DESIGN DD TYPE

4	Approved / !	Released For Fabrica	tion/Construction			
	Approved / F subject to in	Released For Fabrica corporation of comm	tion/Construction	প্রতিপ্র	i CAT L	
	To be resulted	vised drawings/desi nitted for approval a	ans required for incorporating	- lu 🕏	ब्रीकेशन / निर्माण । ब्रीकेशन / निर्माण ।	हेत् अनुमोदित्।
		ion and record 🕜	n I	पावरभिक्त स	म्मिलित किया जाए	यों एवं आशोधनों को । कृपया आशोधित
	Not approve	i 		111. P	स्तावेण अनुमोदनार्थ :प्पणियों को सृम्मिरि	नत कर
		Nepal Electric Tamakoshi-Kathm	andu 220/400 kv	(हस्ताक्षर) । अ	नः अनुमोदनार्थं प्रस्त् जनार्थं एवं रिकार्कः ।	त कर। हुनु
_	Checked F at	Transmission	Line Project	धीरता/ ३ अभिकेश पाकर		ऑफ इंडिया लि०
	Checked Ey: Recommended By: Approved By:	Date Date	:2107/01X P	This doc	ument is recommended t	मुरुग्राम, (हरियाणा) or approval for construction
1.5	ippiored by:	Date		(तिस्मी) af 400kV i	1324V DIC TAMAKOSHI - BAR	HABISE - KATHIKANDU IN NEPAL
		ı				
						0.
06.0)1,2018	0	First submission for A	pproval	**EKMR	RJR 🕊CSR1
D	ATE	REV.	DESCRIPTION	<u> </u>	DESIGNED	CHECKED APPROVI
CLIENT :	:		REVISIONS			
					ITY AUTHO	
			(An Under	taking of Go	overnment o	f Nepal)
CONSUL	.TANT:	- 1				
:			POWE	RGRID COR	PORATION	OF INDIA LTD
CONTRA	CTOD.	पावर्रा	ग्रेड			· · ·
CONTRA	CTOR:	\mathcal{L}	L&T CONS	TRUCTION		
 	-		POWER TRANSM	SSION AND DISTRIB	UTION IC	
PROJEC		KOSHI to KAT	Ή Μ ΔΝΟΙΙ 220/400 Κ	V TRANSMISSIO	NTINE PROJECT	Γ - 400/220KV AND 132 K\
1			IMANDU TRANSMIS			- +00/2201(AND 102 IV
	0474	00 T TI				
IOD #I-	01/1	23-T-TL s 19	TITLE :			
JOB No.	IO OF DACE	3 19	- '''LE :			
JOB No.	IO. OF PAGE			ATION DECICA	L& DRAWING (OF TOWER TYPE
JOB No. TOTAL N	O. OF PAGE	E DATE	⊣ FOUND	A IRDNIDENIA		// / / / / / / / / / / / / / / / / / /
JOB No. TOTAL N	<u> </u>	i				
JOB No. TOTAL N	NAME	06.01.20	8	DD	VDE +0M BE OIL (DEPTH=3N	Л)
JOB No. TOTAL N DSGN CHKD	NAME KMR RJR	06.01.20 06.01.20	8 8 (132k)	DD WET SO	/DE +0M BE OIL (DEPTH=3N	A) VIND ZONE - 4)
JOB No. TOTAL N	NAME KMR	06.01.20 06.01.20	8 8 (132k)	DD WET SO	/DE +0M BE OIL (DEPTH=3N	VIND ZONE - 4)
JOB No. TOTAL N DSGN CHKD	NAME KMR RJR CSR	06.01.20 06.01.20	8 8 (132k)	DD WET SO	/DE +0M BE OIL (DEPTH=3N	VIND ZONE • 4)
JOB No. TOTAL N DSGN CHKD APPD	NAME KMR RJR CSR	06.01.20 06.01.20 06.01.20	8 8 (132k)	DD WET SO DO SINGLE	VDE +0M BE OIL (DEPTH=3M ACSR BEAR) (V	VIND ZONE - 4)

1	ĺ
{ <i>/</i>	-
\mathcal{L}	/

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC

	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE	Docum	ent No	Date
PROJECT	PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU FRANSMISSION LINE (TKTL)	O17123-T-TL	06.01 2018	
	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet
TITLE	DD/DE +0M BE	KMR	RJR	LOF 17

Design Summary For Different Load Cases:

S.No.	Extension	LC	K-bar	t-bar	M-bar	N-bar	Chimney Inter	action Ratio			FOS		SHEAR
							Compression	Tension	Uplift	Bearing	Sliding	Overturning	CHECK
1	+0m B.E	99	GOVERNS							1.702			SAFE
2	+0m B.E	108		GOVERNS	GOVERNS	GOVERNS			1.01				SAFE
3	+0m B.E	107					0.779					1.07	SAF€
4	+0m B.E	100						0.948			1.48		SAFE

Note: In addition to the governing load cases mentioned above, the foundation has been checked for reactions pertaining to all the load cases as mentioned in the reaction document.

\bigcirc

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC

1				
			Document No	Date
PROJECT	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	017	123-T-TL-4D-DC-2001B	96 01 2018
	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet
TITLE	DD/DE +0M BE WET SOIL (DEPTH=3M) (132kV D/C SINGLE ACSR BEAR) (WIND ZONE - 4)	KMR	RJR	2 of 19

Input Parameters for Foundation Design :-

\$LNo	Description	Variable	Unit	Value
ì	1st Slope of Tower Leg	Φ	Deg	8.558
2	Depth of lower Layer	DI	m	1.350
3	Depth of Upper Layer (maximum)	Du	rm	1.500
4	Depth of Upper Layer (minimum)	Du	m	3.000
5	Unit Weight of Soil in Lower layer	w,	Kg/m¹	940
6	Unit Weight of Soil in Upper layer	W _t .	Kg/m ¹	440
7	Angle of Repose in Lower Layer	α	Deg	15
8	Angle of Repose in Upper Layer	β	Deg	25
9	Limit Bearing Capacity of Soil	Lbcs	Kg/m	13675
10	Factor of Safety applied on foundation loads	Fos		1.100
н	Total Depth of Foundation Below G.L (Including Pcc Pad)	D	m	3 000
12	Plinth Height in mm	Dp	m	0.225
13	Unit Weight of Concrete in Lower Layer	Wel	Kg/m³	1400
[4	Unit Weight of Concrete in Upper Layer	Weu	Kg/m ³	2400
15	Characteristic Strength of Concrete	Fck	N/mm²	20
16	Characteristic Strength of Steel	Fy	N/mm²	500
17	Cover To Chimney Reinforcement	Cec	ពារក	50
18	Cover To Footing Slab Reinforcement	€cs	rimit.	50
19	Slope of Tower Leg	ļ o	Deg	12.014

Assumed Dimensions of Foundation Refer Figure-							
Footing Wintib at the Bottom of Slab 4	В	in l	3.780				
Foeting Width At Bottom of Slab - If	8,	m	3 780				
Footing Width At Top of Slab - II	Bi	m	3.480				
Width of Footing At Bottom of Slab - III	; B2	m	2 0 2 0				
Width of Footing At Bottom of Slab - IV	B3	m	1 450				
Width of Chimney	B¢ ∫	m	0.480				
Depth of PCC Pad	Dpad	m	0.050				
Depth of Slab -1 Form top of PCC Pad	D: 1	m	0 100				
Depth of Slab -II from top of Slab-I	D2	m	0.150				
Depth of Slab -Iff from top of Slab-II	D3	ina i	0.100				
Depth of Slab -IV from top of Slab-III	D-1	, ma	0.200				
2 Height of Chamney Upto G L From Top of Stab - IV	Dc i	1713	2 400				

		DD+0	ALB E
Ultima	ite Foundation Loads in kg - Refer Doc. No. O17123-T-TL-4D-DC-2000	Supp No. 2	Supp No. 4
		LC-99	LC-108
šr. No	Type of Load	CASE-1	CASE-2
1	Compression	88566	
2	Uplift	-	82789
3	Side Thrust (Transverse)	5619	5048
4	Side Thrust (Longitudinal)	1724	1197

(Over Load Factor 1.1 included)

	POWER	L&T CONSTRUCTION TRANSMISSION AND DISTRIBUTION IC				
				Document No	Date	
PRO		TRANSMISSION LINE PROJECT - 400/220KV ANDU TRANSMISSION LINE (TKTU)	O17123-	T-TL-4D-DC-2001B	06 01 2018	
	FOUNDATION DESIGN & I	DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet	
TI		ET SOIL (DEPTH=3M) R BEAR) (WIND ZONE - 4)	KMR.	r jr	3 of 19	
••		(1) CHECK FOR UPLIFT (REFER FIGURE	E - 2)			
r. No.	Description	É	xpression		Value	
(a)	Horizontal Offset of cone in Lower Layer	X = 1.35*Tan(15)			0.3617	
(b)	Horizontal Offset of cone in Upper Layer	Y = 1.5 * Tan(25)			0.6995	
(c)	Gross volume of soil in Lower Layer in M3	[(3.78)^2 *1.35+(2*3.78*1.35*0.3617)+(PI/.3 *1.35*(.0.3617)^2)]			23,166	
(d)	Volume of Concrete in Lower Layer in M ³	((3.78^2+3,48^2+3.78*3.48)*0.15/3)+(2.02*	((3.78^2+3,48^2+3.78*3.48)*0.15/3)+(2.02^2*0.1)+(1.45^2*0.2)+(0.48^2*0.9)			
(e)	Net Volume Lower Layer in M ³	(23 166-3.014)			20 152	
(f)	$A l = B^*B + 4B^*H l^* tan \phi l + \pi H l^2 * tan^2 \phi l$	(3 78^2 + 4 x 3.78 x 35 x tan(15)+3.142x	.35^2xtan(15)^2]		20 1690	
	$A2 = B^*B+4B^* (H1^*tan\phi1+ H2*tan\phi2) + \pi((H1^*tan\phi1+ H2^*tan\phi2)^2)$	(3.78^2 + 4 x 3.78 x (0 3617+0.6995)+3 142	x(0.3617+0 6995)^2;)	33.872	
(g)	Gross Votume of Soil in Upper Layer in M ¹ (As per CBIP manual No 10), V · (At I A2+ sqrt(ALA2))*H ₂ /3	(20.169 + 33.872 + sqrt (20.169 x 33.872)	1 x t 5/3		40,089	
(h)	1	(0.48^2*1.5)	(0.48^2*1.5)			
	Net Volume of Soil in Upper Layer in M ³					
(i)	Weight of Soil Resisting Uplift in Kg	(20.152*940) + (39.744 * 1440)			76174	
(k)	Weight of Concrete in Kg	(3 014*1400)+(0.3456*2400)+(0 1*3.78^2*	1400)+(0.48^2*0.22	5*2400)	7173	
(1)	Total Resistance against Uplift in Kg	(76174 24 + 7173.216)			83347	
	Factor of Safety against Uplift					
		83347.46 / 82789			1.01	
		Since F.O.S is > 1.00 , Foundation is Safe a	gaiost Uplift			
	·) CHECK FOR DOWNTHRUST				
	(A) Bearing Pressure Due to Downthrust in Kg/m ²				T	
(a)	Downthrust acting perpendicular to footing (Y1)	(88566 * (COS(12.014)))			86626 5407	
(b)	Over Load due to Соястете (Kg)	(0.48^2 x 0.225x2400)+(0.48^2x1.5x(2400-	1440))+[(048^2x0.9))+(2.02^2x0.1)+(3.78^2x0.1)+	>407	
	I and the second	1/1 45^2v0 21+			ı	

(A) Bearing Pressure Due to Downthrust in Kg/m²		
(a) Downthrust acting perpendicular to footing (Y1)	(88566 * (COS(12.014)))	86626
(b) Over Load due to Concrete (Kg)	(0.48^2 x 0.225x2400)+(0.48^2x1.5x(2400-1440))+[(0.48^2x0.9)+(2.02^2x0.1)+(3.78^2x0.1)+	5407
	(1.45^2x0 2)+	
	(3.78°2+3.48°2+3.78×3.48)×0.15/3]×(2300-1440)+3.78°2*0.05×(2400-1440))	
(c) Total Downthrust acting normal to footing in Kg.	(86626 12+5406 74)	92033
(d) Bearing Pressure Due to Downthrust (Kg/m²) (P/A)	(92032 86 / 3 78^2)	6441
(e) Depth of Slab below chimney in M	(0.1+0 +5+0 ++0.2)	0.550
(f) Moment Due to Eccentricity (MX & MZ)	(86626 12 * Tan (8 558) *0 55)	7170
(g) Bearing Pressure Due to Eccentricity in Kg/m² (Pe/Z)	(71707(3.78^376)	797
(h) Bearing Pressure Due to Eccentricity in Kg/m² (Pe/Z)	(7170/(3.78^3/6)+(7170/(3.78^3/6))	1593
(i) Total Bearing Pressure in Kg/m ²	(6441 ± 1593 03)	8934
(j) Factor of Safety against Downthrust	(13675 / 8034 03)	1.762
	Since F.O.S is > 1.00 , Foundation is Safe Against Downthrust	

		 -	<u> </u>	Ь	ocument No	Date
PRO		TAMAKOSHI 16 KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 100/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)		O17123-T-TL-4D-DC-2001B		06 01 2018
FOUNDATION DESIGN & DI TITLE DD/DE +0M BE WE (132kV D/C STNGLE ACSR		ESIGN & DRAV	VING OF TOWER TYPE	DESIGNED	CHECKED	Sheet
				KMR	RJR	4 of 19
r. Ne.	Description			xpression		Value
-	(B) Bearing Pressure Due to Transverse Si	de Thrust in Ka	z/m²			
(a)	Coefficient of Passive Earth Pressure in upper		(1+ Sin (25)) / (1+ Sin (25))			2,464
,-,	Coefficient of Passive Earth Pressure in Iower		(1+ Sin (15)) / (1- Sin (15))			1 698
(b)	Depth of Chimey above Slab-IV		Dc = 2.4			2 400
	To find the depth of effective learth pressure	He(=H _t +H ₃), equ	inating the passive pressure of soil to the side t	thrust		
(0)		,	1/2*Kp:W"H,*B,+Kp:W"H,H,B,+1/2*Kp:V	_		
	Columbia constant for Manish					
	Solving this equation for H ₂ with	4 ⇒	1/2*Kp ₂ W ₁ B ₀	=0.5*1.698*940*0 4	8	383 069
			Kp ₂ W ₄ H ₃ B _c	=1.698*1440*(1.5-0		1173.658
				=0.5*2.464*1440*(1		-4767 44
			(-B+sqrt(B ² -4AC))/2A	2.2	,	2.314
				=2.314+(1.5-0.5)		3 3 1 4
	Depth of Effective earth pressure Zone (He) i Since Effective Pressure Zone (He) >(2.4-0.5)		Francisco well only be mabilised in (2.4 - 0.5.)			
{d}	Since Effective Flessure Zone (Fie) *(2.4-0.	271 HERETOTE SON	0.5*2 464*1440*(1.5-0.5)*2*0.48			851 558
(c)	Resisting Soil Force in upper layer Kg. (R1)	=				1056
	Resisting Soil Force in lower layer Kg. (R2)	=	1.698*1440*(1.5-0 5)*(2.4-1.5)*0.48			310
	Resisting Soil Force in lower layer Kg. (R3)	-:	0.5*1.698*940*(2.4-1.5)*2*0.48			
	Total Resisting Soil Force in Kg (R) =		851 5584±1056 29184±316 285728 (851,5584*((1 5-0 5)/3+(2 4-1 5)) 1056 29	184*((2 4-) 5)*() 5)=3	10.285728*((2.4-	2218 136
(f)	C G of Resultant force in m		5y3)y(851 5584+1056 29184+310 28572	(8)		0.730
(g)	Moment @ Base Due to Side Thrust (Kg-m)		56 9*(3-0,05+0 225)-22 8, 4*(0.73+0.55)			15001
(h)	Bearing Pressure due to SideThrust in Kg/m ²	!	(1500) 11/(3 78/3/6))			1666 476
	(C) Bearing Pressure Due to Longitudinal	Side Thrust in	Kg/m²	. <u></u>		
(a)	To find the depth of effective earth pressure	He(=H ₁ +H ₂), eq	uating the passive pressure of soil to the side	thrust		
	•		[1/2*Kp ₁ W ₀ H ₁ ² B ₂ *Kp ₂ W ₀ H ₂ H ₂ B ₃ *1/2*Kp ₂ *			
	Solving this equation for H ₂ with					
	Sorring and equation and regions	Λ=	1/2*Kp ₂ W ₁ B _C	∞0 5*1 698*940*0 ¢	18	383 069
			Kp;W,H _I B,	≈1.698* 440*(1.5-0		1173 658
					1 540 51°2*0 48-1724	-872 442
			1/2*Kp ₃ W ₀ H ₁ *B ₂ -S T	-tr.v = =04 1440.1	Control & MAGINET	1
		H ₂ =	(-B+sqrt(B ² -4AC))/2A			0.618
	Depth of Effective earth pressure Zone (He)	in M	=(H2+H1)	=0.618+(1.5-0.5)		1.618

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC

		The second of th	ANGLES CONTROL OF CONTROL OF CONTROL			Date	
PRO	SECT	TAMAKOSHI to KATHMANDU 220/400 KV TR AND 132 KV BARHABISE - KATHMAN				06 01 2018	
		FOUNDATION DESIGN & DR.	AWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet	
ΤŦ	TLE	DD/DE ±0M BE WET (132kV D/C SINGLE ACSR £		KMR	RJR	5 of 19	
	Resistu	ng Soil Force in upper layer Kg (R3) =	0.5*2.464*1440*(1.5-0.5)^2*0.48		"	852	
	Resistir	ng Soil Force in lower layer Kg (R2) =	1.698*1440*(1.5-0.5)*(1.618-1)*0.48			725	
	Resistir	ng Soil Force in lower layer Kg (R3) =	0.5*1.698*940*(1.618-1)*2*0.48			146	
	Total R	esisting Soil Force in Kg (R) =	851.5584+725.3203968+146.3031683712 (851.5584*((1.5-0.5)/3+(1.618-(1.5-0.5)))+725.3203968*((1.618-(1.5-0.5))+0.5)+146.3031683712*((1.618-(1.5-0.5))/3))/(851.5584+725.3203968+146.3031683712)		1723		
(c)	C.G of I	Resultant force in m			816.0		
d)	Momen	rt @ Base Due to Side Thrust (Kg-m)	1724*(3-0.05+0.225)-1723 18*(0.618*(2.4-0.5-1.618)+0.55)				
e)	Bearing	r Pressure due to SideThrust in Kg/m²	(2975.09/ (3.78^3/ 6.).)			330.503	
	(D) Tot	al Bearing Pressure					
(D)	Total B	earing Pressure due to Downthrust & Side Thrust in	Pmax = (8034 + 1666 + 331)			10031	
			Pmin = (6441 - 1593 - 1666 - 331)			2851	
g)		of Safety against Bearing	(13675*1.25 / 10031.01)			1.70	
	(Limit code.)	bearing pressure is increased by 25% as per 1S	Since F.O.S in bearing is >1.00, Foundation	n is Safe In Bearing			

(3) STRUCTURAL DESIGN OF FOUNDATION

Sr. No.	Description	Expression	Value
A)	Design Base Slab Reinforcement (Refer Fig. 5 for base pressure distribution)		
(a)	Design bearing pressure (Kg/m2)	= {(P/A+(0.5*Pe/Z)) - Max. of (Bearing pressure due to S.T.(T),S.T.(L) }	
(6)	Maximum , Pmax in Kg/m²	= (6441 + 7% 517 -1666 48)	8904
(c)	Minimum , Pmen in K⊈/m²	= (6441 - 796517 - 166648)	3978
(d)	Maximum pressure Pmax in N/mm3	8903 993*9 81/1000000	0.087348
(e)	Minimum pressure Pmin in N/mm2	3978 007*9.81/1000000	0.039024
ക	Total Depth of At Section X-X in 'm'	(0.1 ± 0.15 ±0.1±0.2)	0.550
(g)	Effective Depth of Stab (Dactual) at Section X-X in mm	(550 - (10 + 10/ 2 + 50))	485
(h)	Total Depth of At Section Y-Y in M	(01+015+01)	0.350
(1)	Effective Depth of Slab (Dactual) in mm	(350 - (0 + 10 / 2 + 50))	285
ω	Total Depth of At Section Z-Z in M	(0.1 + 0.15)	0.250
(k)	Effective Depth of Slab (Dactual) in min	(250-(10+10/2+50))	185
(b	Distance from the edge of the footing to Section X-X in 'm'	(3.78-0.48)/2	165

4	7) POWER TR	L&T CONSTRUCTION RANSMISSION AND DISTRIBUTION IC			
			[Pocumeni Na	Date
PRO	TAMAKOSHI to KATHMANDU 220/400 KV TRA AND 132 KV BARHABISE - KATHMANI		O#7123-	O17123-T-TL-4D-DC-2001B	
	FOUNDATION DESIGN & DRA		DESIGNED	CHECKED	Sheet
T	TLE DD/DE +9M BE WET S (132kV D/C SINGLE ACSR BI		KMR	RJR	6 of 19
(m)	Distance from the edge of the footing to Section Y-Y in 'm'	(3 78-1 45)/2			1.165
(n)	Distance from the edge of the footing to Section Z-Z in 'm'	(3 78-2 02)/2			0.880
(o)	Pressure at a distanced#485rnmfrom section X-X	(8904-3978)/3 78*(3 78-1 65+0.485)+3978			7386
(p)	Pressure at a distanced=285mmfrom section Y-Y	(8904-3978)/3 78*(3 78-1 165+0.285)+3978			7757
(q)	Pressure at a distanced=185mmfrom section 2-Z	(8904-3978)/3.78*(3.78-0.88+0.185)+3978			7998
(r)	The pressure at section X-X (Pxx in Kg/m²)	(8904-3978)/3 78*(3 78-+ 65)+3978			6754
(s)	The pressure at section Y-Y (Pyy in Kg/m²)	(\$904-3978)/3.78*(3.78-1.165)+3978			7386
(1)	The pressure at section Z-Z (Pyy in Ky/in ²)	(8904-3978)/3.78*(3.78-0.88)+3978			7757
(u)	Bending Moment at face of chimney at Section X-X in kg-m	6754*(3 78-0.48)*2/8+(8904-6754)*1 65/2*	2/181 65		11145
	per m width Bending Moment at face of chimney at Section X-X in N-mm	· ·	273" 1.03		1 0933E+08
(v)	per m width				Area of Bars
	No and Diameter of Bars to be used in Base Slab	No of Bars required for base slab	Diame	ter of Bar in mm	(Ast) in mm
	MKD "K"	32		10	2513.27
	Value of Xumax /d to be used in slab design	Fy ≈ 500 (Xumax / d) = 0.46 & For Fy = 4	15 (Xumax/d) = 0.4	8	
	Effective Depth Required for slab (Dregd) in mm	Sqn (1.093E+08/ (0.36 * 20 * 0.46*(1-(0.42	*0 46)) * 1 * 1000)		202
	Breadth at section -XX in M = 1.45	Since (dreqd) < than (dactual). Slab depth	is O.K		
	Moment of Resistance at Section - XX Afrx in N-rim	(A1ck = 0.87 *500 * Asi *485 * [4-(Asi *500	26 * 1000*485		
	Total Reinforcement Ast required in mm2	= 10.875 Ast^2 + 210975 Ast + 1.093E+08	= 0		
	where Ast = Reinforcement Reqd for moment. Mrx /m width Ast required for total width	Solving the above Quadratic equation for As =533 13*3.78	st We Get Ast	n.	533 13 2015 23
	Minimum steel area required , mm2	0.12/100 x 3780 x 550			2494.80
(c)	Bending Moment about Section Y-Y per m width	7386*(1.165)*2/2+(8904-7386)*1.165/2*2/3	\$*1,165)*9,8 1 *1000		5.6E+07
	Effective Depth Required for slab (Dregd) in mm	Sqr (5 591E+07/ (0 36 * 20 * 0 46*(1-(0 42	*0 46)) * * 1000)		145
	N 14 1911 - 88 909	Since (dregd) < thận (doctual), Slab depth	is Q.K		
	Breadth at section -YY in M = 2.02				1
(d)	Breadth at section -1 Y in 191 = 2.02 Moment of Resistance at Section - YY Mry in N-mm	(Mry =0 87 *500 * Asi *285 * [1-(Ast *500 /	20 * 1000*285}		
(d)	Moment of Resistance at Section - YY Mry in N-mm where Ast = Reinforcement Regd for moment Mry'm width	Solving the above Quadratic equation for As		Ast =	471
	Moment of Resistance at Section • YY Mry in N-mm			A 51 =	171 1778 87
(Ĥ)	Moment of Resistance at Section - YY Mry in N-mm where Ast = Reinforcement Regd for moment Mry'm width	Solving the above Quadratic equation for As	st We Get	A _{St} =	

Sqrt (3 237E+07/ (0 36 * 20 * 0 46*(1-(0 42*0 46)) * 1 * 1000)

(Mry =0.87 *500 * Asi *185 * [1-(Asi *500 / 20 * 1000*185)]

(Ast = Maximum of (533-13), 2494.8 , 470-6, 1587-6 , 427-08, 1134))

(Let us Provide 32 Nos of 10mm diameter rod as slah reinforcement)

(No of bars required = 31.765

Since (dregd) < (ban (dartual), Slab depth is O.K.

Solving the above Quadratic equation for Ast We Get

119

~427 08*3 78

G 12/100 x 3780 x 250

(2494 8 / (Pr / 4 * 10 ^ 2))

Effective Depth Required for slub (Dregd) in mm

Moment of Resistance at Section - 22 May in N-mm where Ast = Reinforcement Read for moment May

Maximum of the above area of steel is provided as Slab

Breadth at section -ZZ in M = 3,78

Ast required for total width

Reinforcement

Minimum steel area required , mail2

Total No of bars required for slab

Hence the speacing between rod is (mm)

(h)

110

427

1614 36

1134 00

2494 80

32

O.K.

(7)	POWE	L&T CONSTRUCTION R TRANSMISSION AND DISTRIBUTION IC				
PROJECT		FAMAKOSHI (6 KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 460/220KV AND (32 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL) FOUNDATION DESIGN & DRAWING OF TOWER TYPE DD/DE +0M BE WET SOIL (DEPTH=3M) (132kV D/C SINGLE ACSR BEAR) (WIND ZONE - 4)		Document No 017123-T-7L-4D-DC-2001B		06.01.20	
							DESIGNED
				KMR	RJR	7 of 19	
				R)	Check	for One Way Shear At Section - XX : - (Refe	er Fig -3)
(a)	Shear At Section - XX/m in N (0.5*(8904+7386)*(((3.78-0.485))*9.81 930						
(b)	Effectiv	e Area of Cross Section per m run in mm2	485*1000			48500	
(c)	Nominal Shear Stress Tv in N/mm²/m		(93085 16 / 485000)			0.19	
(d)	Total Effective Area of Cross Section in mm²		((1450*200)+(2020*100)+0.5*(3480+3780)*150+3780*(100-50-5))			120660	
(e)	Percentage Slab reinforcement (p)		p = (100 * 2513 27 / 1206600)	p = (100 * 2513 27 / 1206600)			
(f)	Permissible Shear Stress To in N/mm²		(Refer clause no 4.10 of Sp-16-1980 Design	(Refer clause no 4.10 of Sp-16-1980 Design Aids for 1\$ 456			
(g)	Permiss	ble Shear Stress To in N/mm²	[0.85 x { Sgrt (0.8 x Fck) }x{(sqrt(1+5Ct)};	-1}J/(6xCt)			
(h)	Where (Coefficient Ct is given by	Ct = (08 x 20/(689 x 0208)			11.16	
(1)	Permissible Shear Stress To in N/mm²		(((085*((08 * 20)^05*(((1+5 * 11 164)^0 5-1))/(6 * 11 164)))			0 33	
			(Since Te > than Tv Shear Reinforcement is not required				
C)	Check	for One Way Shear At Section - YV 1 - (Refe	r Fig -3)				
(a)	Shear Ar	Section - YY/m N	(0.5*(8904+7757)*(((3.78-1.45)/2)-0.285))*9	981		7191	
(b)	Effective	Area of Cross Section per m run in mm ²	285*1000			28500	
(c)	Nominal	Shear Stress Tv in N/mm² /m	(71916 / 285000)			0.25	
ean	Total Cf	fective Area of Cross Section in min ²	((2020*100)+0.5*(3480*3780)*150+3780*(1	100-50-5))		Otono	
(e)	Percentage Slab semiforcement (p)		p = 300 * 2513 27 Mne(ii)			0.27	
ø	Where C	Gefficient C1 is given by	Ct = (0.8 x 20 / (-6.89 x 0.274)			8 47	
(g)	Permissi	ble Shear Stress To in N/mm²	(((0.85*((0.8 * 20) *0.5*(((1+5 * 8.475)	(((0.85*((0.8 * 20) *0.5*(((1+5 * 8.475)*0.5-1))), (6 *8.475)))			
			(Since Tc > than Tv Shear Reinforcement is	s not required			
D)	Check I	or One Way Shear At Section - ZZ : - (Refer	r Fig-3)				
(a)	Shear At Section - ZZ/m N		(0.5*(8904+7998)*(((3.78-2.02)/2)-0.185))*9.81			5761	
111	Effective Area of Cross Section per mirun in mm ²		185*1600			18500	
- 1	Nominal Shear Stress Tv in N/mm²/m		(57619 / 185000)			0.31	
		ective Area of Cross Section in mm ² ge Slab reinforcement (p)	(0.5*(3480+3780)*150+3780*(100-50-5)) p = 100 * 2513.27/714600			71460	
			ľ			0.35	
i		oefficient Ct is given by	C(= (0.8 x 207 (6.89 x 0.352)	.n c 11 r = / .cc=		6 397	
(g) []	i ermissi	ble Shear Stress To in N/mm ²	(((085*((08 * 20) *05*((1+5 * 6597))))))))))))))))))))))))))))))))))))		in	041	
E)	Check f	or Two Way Shear At Section - XX ; - (Due to					
(a) l	Pressure	ar Section XX in N/mm2	8903.993*9.81/1000000			0 0873	
(b) S	Shear At	Section - XX in N	[((0.087*[3780^2-(480+485)^2])			11667	
(c)	Effective Area of Cross Section in inin ²		(480 + 485)*4 *485			1872100	
		Shear Stress Tv in N/mm²	(1166725/1872190)			0.62	
(d) 11	Allowable Shear Stress (Temax) in Wimm ²		(As per Clause 31 6 3 1 of 18 456 - 2000)				
1	Altowabi					í	
1	Altowabi	Temax ≈ Ks * Tc	Where $(Ks = 0.5 + B^{T})$ Not T than T	Fc = 0.25 *Som Fokt			
			Where (Ks = 0.5 + B ¹) Not ` than 1 ,	Fo = 0.25 *Sqn(Fok) SORT (200)		t 118	

C	∂	POWER	L&T CONSTRUCTION TRANSMISSION AND DISTRIBUTION IC				
					Document No	Date	
PRO	JECT	TAMAKOSHI 16 KATHMANDU 220/400 KV TI AND 132 KV BARHABISE - KATHMA		017123	:-T-TL-4D-DC-200}B	0601 2018	
		FOUNDATION DESIGN & DE					
TI	LLE	DD/DE ±6M BE WE' (132kV D/C SINGLE ACSR		KMR	RJR	8 of 19	
Sr. No.		Description	£	xpression		Value	
F)	Check	for Two Way Shear At Section - VY : - (Due to	Downthrust) (Refer Fig -3)			•	
(a)	Pressur	e at Section YY in N/mm2	8903 993*9 81/1000000			0.08735	
(b)	Shear A	at Section - YY in N	((0.087*[3780^2-(1450+285)^2])			985128	
(c)	Effectiv	e Area of Cross Section in mm²	(1450 + 285)*4 *285			1977900	
(d)	Nomina	d Shear Stress Tv in N/min ³	(985128 / 1977990)			9,498	
(e)	Allowal	ole Shear Stress in concrete (Temax) in N/mm²	Min of (0.5 + (2.02 / 2.02) .1) * (0.25 *	1.118			
			(Since Temax > than Tv Shear Reinforcem				
G)	Check	for Two Way Shear At Section - ZZ : - (Due to	Downthrust) (Refer Fig -3)				
(a)	Pressure	e at Section ZZ in N/mm2	8903.993*9.81/1000000	0.08735			
(b)	Shear A	t Section - ZZ in N	((0.087*[3780^2-(2020+185)^2])	823377			
(c)	Effectiv	e Area of Cross Section in mm ²	(2020 + 185)*4 *185	1631700			
(d)	Nomina	Shear Stress Tv in N/mm²	(823377 / 1631700)		0 505		
(e)	Allowat	ole Shear Stress in concrete (Temax) in N/mm ²	Min of (0.5 + (3.48 / 3.48) ,1) * (0.25 *	1.118			
			(Since Temax > than Tv Shear Reinforcem	ent is not required)	<u> </u>	
FI)	Design	of Stab for Uplift Reinforcement at Section - ZZ	;•				
(a)	Bearing	Pressure due to Uplift in Kg/m2	(82789) : (378°2-04872))			5889	
(a)	Bending	g Momentim width @ - ZZ (Mux) in N-mm	(5889 102 * (3.78 - 2.02)^2/8 * 3.78) *	981* 1000)		8.456E+07	
(b)	Momen	t of Resistance at Section - ZZ Muy in N-mm	(Muy =0 87 *500* Astuy *185 * [1-(Astuy *5	00 / 20 * 3780*185	ון	1	
(c)	Astuy =	Reinforcement for Uplift @ - ZZ /M-width	Solving the above Quadratic equation for As	stuy We Get Astuy	, -	1094 03	
	Minimu	m steel area required , mm2	0.12/100 x 3780 x 250			1134	
(6)	No and	Diameter of Bars to be used in Base Slab	Diameter of Bar in imm	No of Bars rec	nuired for Uplift force @ ZZ	<u> </u>	
		At Section - ZZ for Uplift Reinforcement	10	(11347 (Pi/4+10)	2)) =	15.000	
	(Let us Provide 15 Nos of 10mm diameter rod as Uplift Reinforcement at Section - 22 MKD, 'L')						
	Hence t	he speacing between rad is (mm)	263			0.К.	

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC

			Document No	Date	
PROJECT	TAMAKOSHI 16 KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)		O171234T-TL-4D-DC-2001B		
	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet	
TITLE	DD/DE +0M BE WET SOIL (DEPTH=3M) (132kV D/C SINGLE ACSR BEAR) (WIND ZONE - 4)		RJR	9 of 19	

f) Design of Slab for Uplift Reinforcement at Section - YY : -

It may be noted that reinforcement provided at section Z-Z for uplift falls in tension zone and thus would also contribute in moment capacity of section at

section Y-Y. This is because under uplift, compression occurs at the face of the base slab having more width (more area of compression flange) and section

behaves as a highly under reinforced section. From the equilibrium of internal and external forces on the slab section and using stress and strains of

concrete and steel as per IS:456, the following equation (Moment of resistance) can be obtained

 $X_{11}/d_1 = (p_y/100)x(d_y/d_1)x(f_5/0.36f_{ch}) + (p_y/100)x(0.87f_y/0.36f_{ch})$

where:- p₃ = (100 A₃₃ / Bd₃) and p₄ = (100 A₃₂/ B₆₃); fs= Design yield stress of steel at d₂ from MCE calculated for strain in steel at that level(arrived through interpolation from strain diagram)

 A_{ss} = Area of reinforcement at the top of bottom-most step, A_{ss} = Area of reinforcement at the top of the topmost step

Moment of resistance of slab section at the face of the chimney:

 $\mathbf{M_{u}} = [0.87f_{y} \land (p_{2}/100) \land (d_{2}/d_{1}) \land (d_{2}/d_{1} - 0.416 \ \mathrm{Xw/d_{1}}) + (0.87f_{y}) \land (p_{2}/100) \land (f - 0.416 \ \mathrm{Xw/d_{1}})] \land \mathbf{Bd_{1}}^{2}$

Substituting the value of Xwd1 in the above equation, we get the second order degree equation which can be resolve as follows:-

 $A = 0.416* (0.87*f_c)^2/(0.36*f_{ck})$

 $B = 0.416^{\circ}(\{0.87^{\circ}f_{s}\}/(0.36^{\circ}f_{ck}\}) \times \{(fs^{\circ}(p_{s}/100)^{\circ}(d_{s}/d_{s})) + \{(0.416^{\circ}fs^{\circ}(p_{s}/100)^{\circ}(d_{s}/d_{s}))^{\circ}((0.87^{\circ}f_{s})/(0.36^{\circ}f_{ck})) + 0.87^{\circ}f_{s}\}$

 $C = \{M_{us}/B^*d_1 \wedge d_1\} - \{fs^*(p_2/100)^*(d_2/d_1)^*2\} + \{0.416^*(p_2/100)^*(d_2/d_1)\} + \{(fs)/(0.36^*f_{ck})\}^*((fs^*(p_2/100)^*(d_2/d_1))\} + \{(fs)/(0.36^*f_{ck})\}^*((fs)/(0.36^*f_{ck})) + \{(fs)/(0.36^*f_{ck})\} + \{(f$

(a)	Bearing Pressure due to Uplift in Kg/m²	(82789) / (378^2+048^2);		5889			
(h)	Bending Moment @ + YY (Mus) in N-mm	£ 5889 402 * £3 78 + £45 7 3 8 * 2 02) *	9.812.100004	7.9194E-07			
(c)	Strain in reinforcement at d ₂ from Bottom of slab-I (By linear	th-I (By linear interpolation from Strain Diagram)					
(d)	Design yield stress of reinforcement at ds from Bottom of slab	-I (fs in N/mm2) [Refer Fig.3 of SP-16]		296 39			
	$A = 0.416$ * (0.87* f_{c})^2/(0.36* f_{ck})	A=((0.416*(0.87*500)^2/(0.36*20))	A=((0.416*(0.87*500)^2/(0.36*20))				
	$B = 0.416*((0.87*f_s)/(0.36*f_{d_s}))^*((fs*(p_3/100)*(d_2/d_1))$	B=0.416*((0.87*500)/(0.36*20))*((2%5.39*0.0017*(185/285))					
	+ ((0 416°18*(p ₃ /100)*(d <u>3</u> /d ₁))*((0 87°f ₄))(0 36°f ₄))	+((0.416*296.39*0.0017*(185:285))*((0.87*500):(0.36*20))					
	-0.87*f,	-0 87*500					
	$C^{\perp}(M_{ov}/B^*d_1^*d_1) - (fs^*(p_3/100)^*(d_2/d_1)^2)$	C=(79193822 949/2020+285*285)-(296,39*0 0017*(185/285)*2))					
	+ (0.416*(py/100)*(dy/d ₁)) * ((fs)/(0.36*f _{ix}))	+(0.416*0.0017*(185/285))*((296.39)/(0.36	*20))	0 27834			
	((fs(py/100)*(dy/d ₁))	*((296 39*0.0017*(185/285))					
	Therefore by resolving the above equation, we get,						
	ps4/100	ps4/100 ~ (-b + SQRT(b^2=lac))/2*a					
		ps4/100=418 707-SQRT(175315 958-4*109	33*0.278))/(2*10933))	0.000677			
		Therfore, ps4 =		0 07			
	Therefore reinforcement Ast4 in inna2	As(4=((0.068*2020*285)/100)		389 59			
	No and Diameter of Bors to be used in Base Slab	Diameter of Bar in mm	No of Bars required for Uplift force @ YY				
(c)	At Section - YY for Uplift Reinforcement	10	(389 593 / (P) 4 *10^2)) ·	8 000			
-	(Let us Provide 8 Nos of 10mm diameter rod as Uplift Reinforcement at Section - YY, MKD 'M')						
	Henre the speacing between rod is (mm)	274		О.К.			

E	$\widehat{\mathcal{D}}$	POWER T	L&T CONSTRUCTION TRANSMISSION AND DISTRIBUTION IC				
				D	Document No		
PRO	JECT	TAMAKOSHI to KATHMANDU 220/400 KV TR AND 132 KV BARHABISE - KATHMAI		017123-1	O17123-T-TL-+D-DC-2001B		
T.	TLE	FOUNDATION DESIGN & DR DD/DE ±0M BE WET		DESIGNED	CHECKED	Sheet	
	(132kV D/C SINGLE ACSR			KMR	RJR	10 of 19	
J}	Design of Slab for Uplift Reinforcement at Section - XX		:-				
	lt may	be noted that reinforcement provided at section Y	-Y for uplift falls in tension zone and thus wo	₫d also contribute in	moment capacity of secti	on at section X-X.	
(a)	Bearing	g Pressure due to Uphft in Kg/m²	(82789) / { 3 78 ^2 - 0 48^2)}			5889	
(b)	Bending	Sending Moment @ - XX (Mux) in N-mm (5889,102 * (378 - 0.48)*278 * 1.45) * 9.81* 1000)				[140€+08	
(c)	Strain i	n reinforcement at d ₂ from Bottom of slab-I (By line	ar interpolation from Strain Diagram)			1,0100 6 -03	
d)	Design	yield stress of reinforcement at d ₂ from Bottom of si	ab-I (fs in N/mm2) [Refer Fig 3 of SP-16]			202 00	
	A = 0.4	16* (0.87*f, y^2/(0.36*f _{ek})	A=((0.416*(0.87*500)*2/(0.36*20))	10933			
	B · 04	16*((0 87*f,)/(0.36*f _{ck})) *((fs*(p ₃ /100)*(d ₃ /d ₁))	B=0.416*((0.87*500)/(0.36*20))*((201 998				
	+ ((0.4)	16*fs*(p√100)*(d₂/d₁))*((0.87*fζ)/(0.36*f _d))	+((0.416*201.998*0.0011*(285/485))*((0.87*500)/(0.36*20))				
	- 0 87*1	r,	-0,87*500				
	C=(M _e	_x /B*d₁*d₁) - (fs*(p₃/100)*(d√d₁)°2)	C=(114031274 617/(1450*485*485)-(201.95				
	+ (0,41)	6*(p ₁ /100)*(d ₂ /d ₁)) * ((fs)/(0.36*f _{sk}))	+(0.416*0.0011*(285/485))*((201.998)/(0.36*20)) *((201.998*0.0011*(285/485))				
	((fs(p	o√100)*(d√d₁))					
	Therefo	ore by resolving the above equation, we get,					
	ps5/100)	ps5/100 = (-b - SQRT(b^2-4ac))/2*a				
			ps5/100+428/488-SQRT(183601/972-45169	3370 2594(2719933)	a ·	9 0 0 0 0 6 1 4	
			Therfore, ps5 =			0.061	
	Therefo	ore reinforcement Ast5 in mm2	Ast5=((0.061*1450*485)/100)			432 14	
	Minimu	un steel area required , min2	0 12/100 x 1450 x 550			957	
(c)	No and	Diameter of Bars to be used in Base Slab	Diameter of Bar in min No of Bars required for Uplift for		red for Uplift force @ XX		
(c)		At Section - XX for Uplift Reinforcement 10 (957 / (Pt /4*10°2)) =					
	(Let us Provide 13 Nos of 10mm diameter rod as Uplift Reinforcement at Section - XX, MKD 'N')						
	Hence	the speacing between rod is (mm)	£13			о.к.	

(POWE	L&T CONSTRUCTION IR TRANSMISSION AND DISTRIBUTION IC			
	TANAL COSTILLE VA THE MANIPH AND VA			scument No	Date
PRO) IFC T	/ TRANSMISSION LINE PROJECT - 400/220KV MANDU TRANSMISSION LINE (TKTL)	O17123-T	-TL-4D-DC-20018	06 01 201:
	•	DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet
	•	VET SOIL (DEPTH±3M) SR BEAR) (WIND ZONE - 4) (4) CHECK FOR SLIDING (Refer Figure -	KMR	RJR	11 of 19
		1	·		
r. No	Description	E	xpression		Value
(a)	Coefficient of Passive Earth Pressure in Lower layer	(1+ Sin (15)) / (1- Sin (15))			1 698
(b)	Coefficient of Passive Earth Pressure in Upper layer	(1+ Sin (25)) / (1- Sin (25))			2 464
(c)	Facial Area in upper layer of Chimney in m ²	A1 = (0 48 * (1 5 -0 5))			0.180
(d)	Facial Area in lower layer of Chimney in m2	A1 = (0.48 * (2.4 - 1.5))			0.432
(e)	Facial Area in Portion of Slab- IV in m ²	A2 = (0.2 * 1 45)			0.290
(f)	Facial Area in Portion of Slab- III in m ²	A3 = (0.1 * 2.02)			0,202
(g)	Facial Area in Portion of Slab-II in m	A4 = (0.15 * (3.78 + 3.48)/2)			0.545
(b)	Facial Area in Portion of Slab- 1 in m ²	A5 = (01 * 378)			0.378
(i)	Earth Pressures in Upper Layer in Kg/m²	(Plu = (2.464 * 1440 * (t 5-0.5)))			3548
(j)	Earth Pressures in Lower Layer 1 in Kg/m ²	(PI) = (1.698 * 1440 * (1.5-0.5)))			2445
(k)	Earth Pressures in Lower Layer 2 in Kg/m ²	(P2 = (2445)2 + (1 698 * 940 *(1.35 - 0	15 - 0 1 - 0.2))		3882
(l)	Earth Pressures in Lower Layer 3 in Kg/m ²	(P3 = (3881 628 + (1 698 * 940 * 0 2))			4201
(m)	Earth Pressures in Lower Loyer 4 in Kg m ²	(P4 = (4200 852 + (t 698 * 940 * 0.1))			4360
(n)	Forth Pressures in Lower Layer 5 in Kg/m ²	(P5 = (4360 464 ÷ (1 698 * 940 * 9 15))			4(400
(0)	Earth Pressures in Lower Layer 6 in Kg/m ²	(P6 = (4599 882 + (1698 * 940 * 01))			4759
(p)	Lateral Force in Lower Layer -1 in Kg	(Fi = 0.48 / 2 * (3548.16))			852
(q)	Lateral Force in Lower Layer -2 in Kg	(F2 = 0.432 /2 * (2445 12+3881.628))			1367
(r)	Lateral Force in Lower Layer -3 in Kg	(£3 = 0.29 / 2 * (3881 628+4200 852))			1172
	Lateral Force in Lower Layer → in Kg	(F4 = 0.202 / 2 * (4200 852+4360 464))			365
(t)	Lateral Force in Lower Laver -5 in Kg	(F5 = 0 5445 / 2 * (4360 464 · 4599 882);			
	Lateral Force in Lower Layer -5 m Kg		•		2439
(u)	Taleign ordern Lower Layer -> III kg	(F5 = 0 378 / 2 * (4599.882+4759 494))			1769
	Francis Suffer & maint Shiding	Total Lateral Force in Kg			8463
	Factor of Safety Against Sliding :-				
		(8463 165 / 5619)			1.51
		Since F.O.S > 1.00 foundation is Safe again: (5) CHECK FOR OVERTURNING	st sliding		
r. No.	Description	Ex	pression		Value
(a)	Maximum Transverse Side Thrust in Kg		(5619)	·- ····	5619
	Maximum Longidutinal Side Thrust in Kg		1724)		1724
	Resultant Side Thrust (R) in Kg		972 + (72412.))		5878
	Fotal Overlurning Moment in Kg-in	(82789 * Cos (12 014) * ((3 * 0.225 - 0.05) - 7	3.78 / 2 + 3.78 / 6) +		111652
(c)	Total Resisting Moment in Kg-m	į	24 * 5 / 6 * 3 78)		1 9974
(f)	Factor of Safety Against Overtorning	(119974 43	28 / 111652 223)		1.08
* 1	· · · · · · · · · · · · · · · · · · ·	1			1 "

Since F.O.\$ >1.00 foundation is Safe against Overturning

\bigcirc	L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC						
	TAMAKOSHI 10 KATHMANDU 220/400 KV TRANSMISSION LINE	Documen	t No	Date			
PROJECT	PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-T-TL-4D-DC-2001B		06,01 2018			
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE DD/DE +0M BE WET SOIL (DEPTH=3M)	DESIGNED	СНЕСКЕД	Sheet			
	(132kV D/C SINGLE ACSR BEAR) (WIND ZONE - 4)	KMR	RJR	12 of 19			

3.0 DESIGN OF CHIMNEY (Chimney Design with Stub contribution)

3.1 Loading:Compression with biaxial bending

(88566+0.48^2*(0.225+2.4)*2400)*9.81/1000 Puc=

883.07 KN

Mux= (5619)*(2.4+0.225)-2218.136*(2.4-0.5)/3)*9.81/1000

130.91 KN-m

(1724)*(2.4+0.225)-1723.182*(2.4-0.5)/3)*9.81/1000 Muy≂

33.69 KN-m

Material Property:

500 N/mm² fys= 250 N/mm² fçk= 20 N/mm²

Geometric Property:

480 mm 50 mm Clear cover

Dia of reinf 20 mm and 20 mm No. of reinf= 4 nos. and 4 nos.

d' = 60 mm

TRIAL-I Say Neutral Axis at a distance from MCE = Xu = 249.849 mm

Location	Distance from MCE	Strain	Stress (f _{si} -f _{ci})	Area			Distanc e from CG	Moment
	mm		N/mm ²	mm²	KN	mm	mm	KN-m
MCE	0.0	0.00350	-	-	-	249.849	240	-
R1	60.0	0.00266	386.64	942.48	364.40	189.849	180	65.59
R2	240.0	0.00014	7.59	628.32	4.77	9.849033	0	0.00
Stub	240.0	0.00014	7.59	2988.00	22.69	9.849033	0	0.00
R3	420.0	0.00238	394.99	942.48	-372.27	-170.151	-180	67.01
•		Total	L	5501.27	19.59			132.60

Concrete force incompression, F = 0.36*fck*xu*d

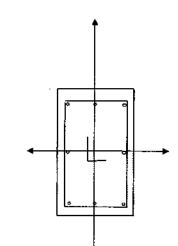
Concrete force incompression,F = 863.48 KN

Total axial Capacity = Concrete force in compression + Summation of all internal forces induced by the rebar & the stub Total axial capacity = 863.48 883.07 KN 19.59 883.07 KN

Moment due to compression force in concrete = F*(C.G - 0.416Xu)

= 117.488 kN-m

Total Moment capacity = Moment due to compression force in concrete + Moment due to rebar & the stub 250.09 kN-m


Total Moment capacity =

Puz≃ 3526.816329 Pu/Puz= 0.25039

Interaction formula =

0.610

ŌΚ

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC								
_	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE	Document	t No	Date				
PRÓJECT	PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU: TRANSMISSION LINE (TKTL)	O17123-T-TL-4D-DC-2001B		06 01,2018				
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE DD/DE +0M BE WET SO(L (DEPTH=3M)	DESIGNED	CHECKED	Sheet				
	(132kV D/C SINGLE ACSR BEAR) (WIND ZONE - 4)	KMR	R.IR	13 of 19				

3.2 Loading:Tension with biaxial bending

Put=

82789*9.81/1000

812 KN

Mux=

116.21 KN-m

Muy=

20.12 KN-m

Material Property:

500 N/mm2

250 N/mm2

fck=

20 N/mm2

Geometric Property:

ď' =

480 mm

clear cover

TRIAL-I

50 mm

Dia of reinf No. of reinf= 20 mm

and and

20 mm 4 nos.

4 nos. 60 mm

91.078 mm

Say Neutral Axis at a distance from MCE = Xu = MCE: Most Compressed Edge of concrete

Location	Distance from MCE	Strain	Stress (f _{si} -f _{ci})	Area			Distanc e from CG	Moment
	mm		N/mm2	mm2	KN	mm	mm	KN-m
MCE	0	0.00350	- "	-	-	91.07751	240	-
R1	60	0.00119	218.85	942.48	206.27	31.07751	180	37.13
R2	240	0.00572	435.00	628.32	-273.32	-148.922	Ō	0.00
Stub	240	0.00572	217.50	2988.00	-649.89	-148.922	0	0.00
R3	420	0.01264	435.00	942.48	-409.98	-328.922	-180	73.80
		Total		5501.27	-1126.92			110.92

Concrete force incompression, F = 0.36*fck*xu*d Concrete force incompression,F = 314.76 KN

Total axial Capacity = Concrete force in compression + Summation of all internal forces induced by the rebar & the stub Total axial capacity = 314.76 + 812.16 KN 812.16 KN -1126.92 ≥

Moment due to tension force in concrete = $F^*(C.G - 0.416Xu)$

= 63.6167 kN-m

Total Moment capacity = Moment due to compression force in concrete + Moment due to rebar & the stub

Total Moment capacity =

174.54 kN-m

Pu/Puz=

0.781 oĸ

Design of Lateral ties

Interaction formula =

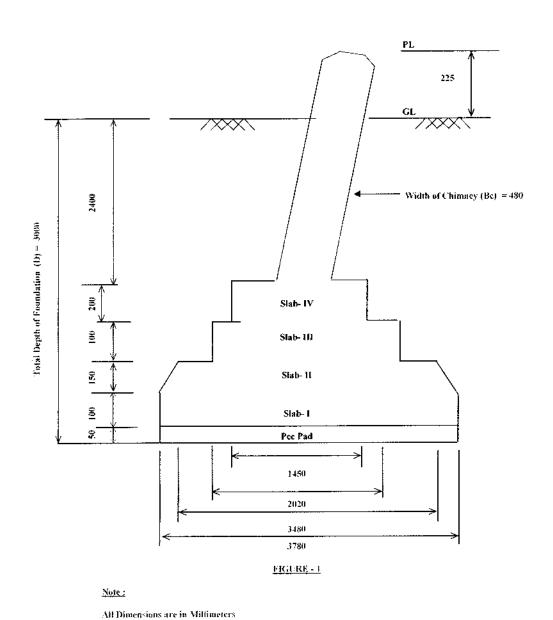
Minimum Diameter of Lateral Ties in mm =1/4 of largest dia. of Longitudinal bar 0.25*20

5 mm

Hence provide lateral ties of dia mm

As per Clause 26.5.3.2 of IS 456 - 2000. Pitch of lateral Ties shall be least of the following

0.48*1000 480 mm (i) Least lateral dimension of compression member = (ii) 16 times smallest diameter of longitudinal bars = 16*20 320 mm (iii) 300mm 300 300 mm


So, provide the lateral ties at a distance of

300 mm c/c

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC

PROJECT	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132	Documen	t No	Date
PROJECT	KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-T-TL-4D-DC-2001B		06.01.2018
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE DD/DE +0M BE WET SOIL (DEPTH=3M)	DESIGNED	CHECKED	Sheet
11100	(132kV D/C SINGLE ACSR BEAR) (WIND ZONE - 4)	KMR	RJŔ	14 of 19

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC

	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132	Docume	nt No	Date
PROJECT	KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-T-TL-4D-DC-2001B		06.01.2018
	FOUNDATION DESIGN & DRAWING OF TOWER TYPE	DESIGNED	CHECKED	Sheet
TITLE	DD/DE +0M BE WET SOIL (DEPTH=3M) (132kV D/C SINGLE ACSR BEAR) (WIND ZONE - 4)	KMR	RJR	15 of 19

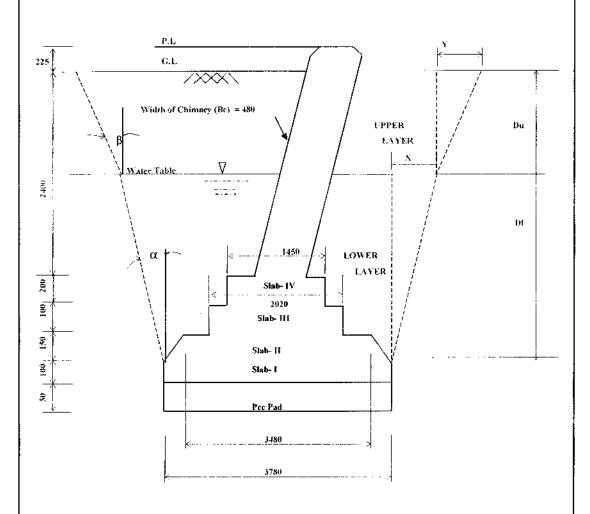
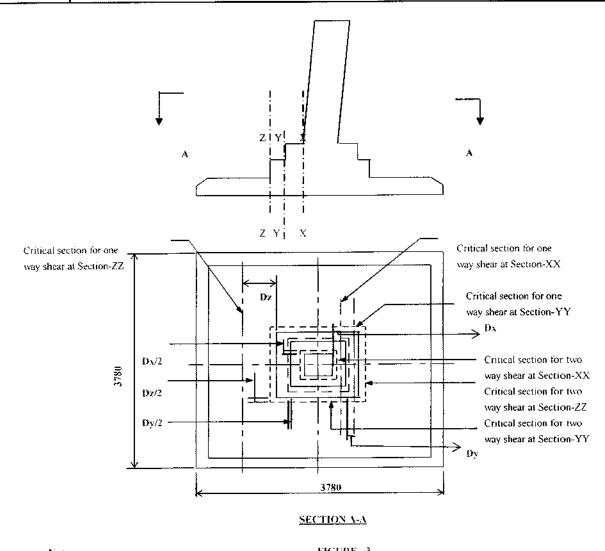


FIGURE - 2

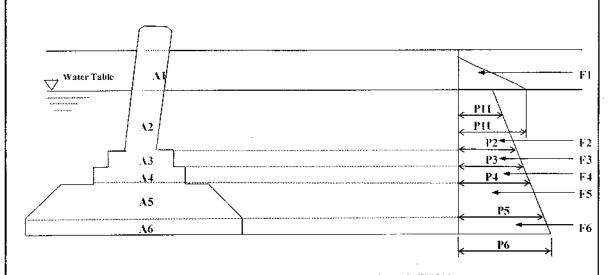

Note:

All Dimensions are in Millimeters

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC

ſ		TAMAKOSHI to KATHMANDU 220/400 KV	Docume	nt No	Date
	PROJECT TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)		O17123-T-TL-41	D-DC-2001B	06.01.2018
Ī	TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE DD/DE +0M BE WET SOIL (DEPTH=3M)	DESIGNED	CHECKED	Sheet
۱		(132kV D/C SINGLE ACSR BEAR) (WIND ZONE - 4)	KMŘ	RJR	16 of 19

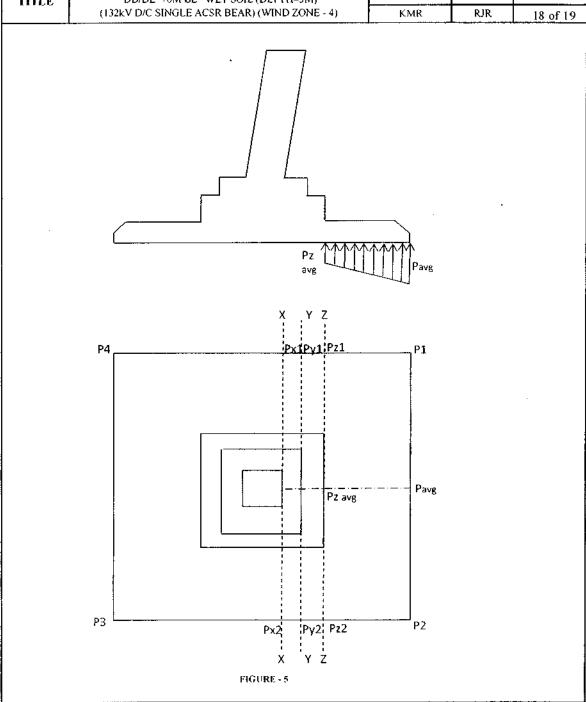
Note:

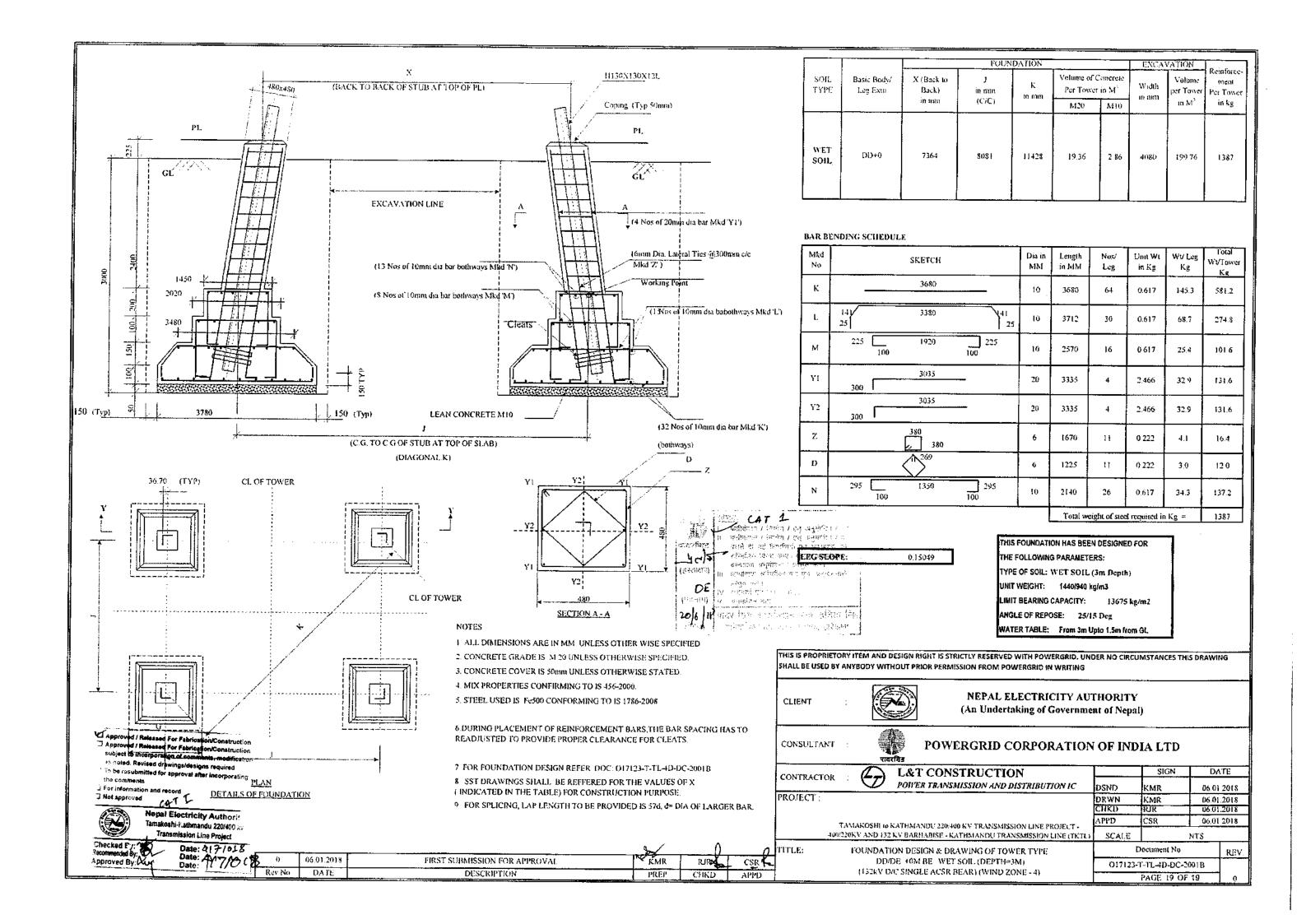

FIGURE - 3

All Dimensions are in Millimeters

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC

PROJECT	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132 KV	Document No O17123-T-TL-4D-DC-2001B		Date
PROJECT	BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)			06.01.2018
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE DD/DE +0M BE WET SOIL (DEPTH=3M)	DESIGNED	CHECKED	Sheet
TITLE	(132kV D/C SINGLE ACSR BEAR) (WIND ZONÉ - 4)	KMR	RJR	17 of 19


EARTH PRESSURE DISTRIBUTION


FIGURE - 4

L&T CONSTRUCTION POWER TRANSMISSION AND DISTRIBUTION IC

	TAMAKOSHI to KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220KV AND 132	Document No		Date
PROJECT	KV BARHABISE - KATHMANDU TRANSMISSION LINE (TKTL)	O17123-T-TL-4	D-DC-2001B	06.01.2018
TITLE	FOUNDATION DESIGN & DRAWING OF TOWER TYPE DD/DE +0M BE WET SOIL (DEPTH=3M)	DESIGNED	CHECKED	Sheet
m n + n	(132kV D/C SINGLE ACSR BEAR) (WIND ZONE - 4)	KMR	RJR	18 of 19

L&T Construction

Power Transmission & Distribution

CLIENT:

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

ONSULTANT

POWER GRID CORPORATION OF INDIA LTD

PROJECT : TAMAKOSHI – KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT - 400/220 KV AND 132 KV BARHABISE – KATHMANDU TRANSMISSION LINE

LOA No.: 073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4D-GA-0401A

BOM No.: BOM/LE17D124/132kV/DD/001A

पूर्वी केब्रीकेशन / निर्माण हेतु अनुगोदित । केब्रीकेशन / निर्माण हेतु अनुगोदित । केब्रीकेशन / निर्माण हेतु अनुगोदित ।

साम्मालत किया जाए। कृपया आशोधि स्तायेज अनुमोदनार्थ प्रस्तुत करें। ट्रिप्पणिया का सम्मितित कर पुनः अनुमोदनार्थ प्रस्तुत करें। सूचनार्थ एवं विकार्ड हेतु।

NO OF SHEETS:

2

(মণিকে বি মণিকা) বাবেব শিত্ত কাব্যাবিধান প্রাণ্ড ক্রিয়া লিত ক্রিয়ালিকা ক্রিয়ালিকা ক্রিয়ালিকা ক্রিয়ালিকা ক্রিয়ালিকা শিক্ত ক্রিয়ালিকা ক্রিয়ালিক

3M STUB EXTENDER FOR TOWER TYPE - "DD/DE" (132kV, WZ-4) (-4.5M TO +9M EXTN.) ONE CORNER ONLY

WEIGHT OF STRUCTURE				
HT MEMBERS: BOM/LE17D124/P3DRC	82.846			
MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ETC.	, p			
WEIGHT OF BOLTS & NUTS, SPRING WASHERS: BOM/LE17D124/P3DRB	2.544			
TOTAL WEIGHT OF STRUCTURE:	85.39 Kgs			

THIS STUB EXTENDER SHALL COMPLETE WITH EXISTING STANDARD STUB OF DD TYPE TOWER FOR 3M DEPTH FOUNDATION

REV.	17.07.19 DATE	FIRST SUBMISSION FOR APPROVAL DESCRIPTION			PU CHKD.	REVED.	CSR APPD.
PREPA	RED BY	CHECKED BY	REVIEWED BY	APPROVI			ATE
ALEX		PU	BSR	CSF	CSR 1		07.19

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

LÄRSEN & TOUBRO LIMITED, CONSTRUCTION., 979, Mount-Poonamallee Road, Manapakkam, Tamilnadu-600089, PHONE: 044-22526000, FAX: 044-22526059

Date:

17-Jul-2019

Daner 1

: 1 of 1

BILL OF MATERIAL

Order No :

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No:

BOM/LE17D124/P3DRC

Order Ref:

REF/LE17D124

I.No	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Req Qty	Per piece wt	Total Wt	Per Piece Ass.Wt
	BOM OF 3M S	TUB EXTENDER FOR TOW	ER TYPE-"DD/DE"	(132KV W	/Z-4) (ONE CORNE	₹	
.1	N1SDD3E1H	L130X130X12H-E350A	3057.00	23.500	1	71.840	71.840	
2	N1SDD3E2H	L120X120X8H-E350A	385.00	14.700	1	5.674	5.674	
3	N1SDD3E3H	8MM PLATE H-E350A	110.00 X 386.00	62.800	2.	2.666	5.332	
				Total We	ight :		82,846	- <u>1</u> - 1

Associated Parts

Part Code	Type of Association	Associated with	Total Weight

No Association Part

Raw Material Involved	Standard Material	Total Weight (In Kg)
BOM OF 3M STUB EXTENDER FOR TOWER WZ-4) ONE CORNER	TYPE-"DD/DE" (132KV	
8MM PLATE H-E350A	HT	5.332
L120X120X8H-E350A	, нт	5,674
Ĺ130X130X12H-E350A	una disensa ya sana disensa ili sana una sana di mandan dan sunta di disensa da di di di di di di di di di di d HT	71.840
	Total	82,846
	HT	82.846

LARSEN & TOUBRO LIMITED, CONSTRUCTION., 979, Mount-Poonamallee Road, Manapakkam, Tamilnadu-600089, PHONE: 044-22526000, FAX: 044-22526059

Date:

17-Jul-2019

Page:

1 of 1

BILL OF MATERIAL

Order No :

LE17D124 - Intra-Pith-Kathmandu 400/220 KV

Bom No :

BOM/LE17D124/P3DRB

Order Ref:

REF/LE17D124

•	Part Code	Raw Material	Length Size (In MM)	Unit Wt (In KG)	Qty	Per piece wt		Per Piece Ass.Wt
•	BOLTS & NU CORNER	TS OF 3M STUB EXTEND	DER FOR TOWER TY	PE-"DD/DE"	(132K	V WZ-4) ON	i E	<u> </u>
1	P3DRB1	M16x55MM LONG (IS:12427)	•	0.150	16	0.150	2.400	.:
2	P3DRB2	M16x3,5MM SPRING WASHER IS3063		0.009	16	0.009	0.144	*
				Total We	ight :		2.544	

Associated Parts

Part Code

Type of Association

Associated with

Total Weight

No Association Part

Raw Material Involved	Standard Material	Total Weight (In Kg)
BOLTS & NUTS OF 3M STUB EXTENDER FOR TOWER TYPE-"DD/DE" (132KV WZ-4) ONE CORNER		
M16x3,5MM SPRING WASHER IS3063		0.144
M16x55MM LONG (IS:12427)		2.400
and the state of t	Total	2 544

CLIENT:

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

CONSULTANT:

POWER GRID CORPORATION OF INDIA LTD

PROJECT:

TAMAKOSHI - KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT -400/220 KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE

LOA No.:

073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4D-GA-0403

BOM No. :

BOM/LE17D124/132kV/DD/003

01201X III. (हस्ताक्षर) ACDE ता / इ. अभिवंता Seferational (Act of \$4.4) spectral (efection)
This document is recommended for approval for construction of 400kV /132kV DIC YAWAACSHII - BARHABISE - KATHMANDU In NEPA

पावरमिङ

फंबीकेशन / निर्माण हेत् अनुमोदित। फेब्रीकेशन / निर्माण हेलु अनुमोदिस। सम्मिलिल किया अस्त । कृपया आशोधित दस्तावेण अन्तात टिप्पणियों को मा पुनः अनुगावनार्थ प्रदर्श करे। IV. स्वमार्थ एवं १२कार्य छत्। V. अनुमोदित नहीं। पायर फिड कारवारेशन औरक इ<mark>डिया लि</mark>

NO OF SHEETS:

200

12

Approved / Released For Fabrication/Construction Approved / Released For Fabrication/Construction subject to incorporation of comments, modification as noted. Revised drawings/designs required To be resubmitted for approval after incorporating the comments For information and record CAT I

BILL OF MATERIAL

+0M LEG EXTN. FOR TOWER TYPE - "DD/DE" (132kV, WZ-4) (ONE CORNER ONLY)

☐ Not approved Tamakoshi-kathmandu 220/400 kv Transmission Line Project

Checked F /: Recommanded By: Approved By:

Date:5/5/018 Date:

WEIGHT OF +0M LEG EXTN. (ONE CORNER) (WITH STEP BOLT)		WEIGHT OF +0M LEG EXTN. (ONE CORNER) (WITH OUT STEP BOLT)		
HT MEMBERS: BOM/LE17D124/P1D0S/S1D0S/R-0 = 117.500 BOM/LE17D124/P1D0E/S1D0H/R-0 = 22.832	140.332	HT MEMBERS: BOM/LE17D124/P1D0R/S1D0R/R-0 = 117.500 BOM/LE17D124/P1D0E/S1D0H/R-0 = 22.832	140.332	
MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ECT. BOM/LE17D124/P1D0E/S1D0M/R-0 = 180.602 BOM/LE17D124/P1D0B/S1D0W/R-0 = 0.036	180.638	MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ECT. BOM/LE17D124/P1D0E/S1D0M/R-0 = 180.602 BOM/LE17D124/P1D0B/S1D0W/R-0 = 0.036	180.638	
WEIGHT OF BOLTS & NUTS,SPRING WASHERS BOM/LE17D124/P1D0B/S1D0B/R-0	9.834	WEIGHT OF BOLTS & NUTS,SPRING WASHERS BOM/LE17D124/P1D0B/S1D0B/R-0	9.834	
WEIGHT OF STEP BOLTS BOM/LE17D124/P0S1D/S0S1D/R-0	2.961	WEIGHT OF STEP BOLTS	-	
TOTAL WEIGHT OF STRUCTURE:	333.765 Kgs	TOTAL WEIGHT OF STRUCTURE:	330.804 Kgs	

SUCCESSFULLY TESTED AT CPRI - BENGALURU ON 11th OF JULY 2018

				XIVO	00	1 //_/
12.07.18	SUBMISSION FOR APPROVAL AFTER SUCCESSFUL TESTING		PÚ	BSR	CSR	
DATE	DESCRIPTION		CHKD.	REVED.	APPD.	
RED BY	CHECKED BY	REVIEWED BY	APPROVI	ED BY	Ε	DATE
EX .	PU	BSR	CSI	2	12.	.07.18
	DATE RED BY	DATE RED BY CHECKED BY	DATE DESCRIPTION RED BY CHECKED BY REVIEWED BY	DATE DESCRIPTION RED BY CHECKED BY REVIEWED BY APPROVI	DATE DESCRIPTION CHKD. RED BY CHECKED BY REVIEWED BY APPROVED BY	12.07.18 SUBMISSION FOR APPROVAL AFTER SUCCESSFUL TESTING PU BSR DATE DESCRIPTION CHKD. REVED. RED BY CHECKED BY REVIEWED BY APPROVED BY

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAL - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref.	LE17D124 - Intra-Pith-Kathmandu 400/2	20 KV	,	Date	12-07-	2018
Drg No. BOM No.	- BOM/LE17D124/P1D0S/S1D0S/R-0	-		Page		of 1
Srl Erection No Mark	Section	Length Size(In MM)		eqd. L Qty.	Init/Ass. Weight	Total Weight
+0M LEG EXT	N. (WITH STEP BOLT) FOR TOWER TY	PE-"DD/DE" (132kV, V	VZ-4) ONE CORN	ER		<u> </u>
1 N1SDD21S		5000.00	23.500	1	117.500	117.500
			TOTAL WE	IGHT	:	117.500

*** - Item welded with another item

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV - - BOM/LE17D124/P1D0S/S1D0S/R-0	Date Page	12-07-2018 1 of 1
Srl S No	Section Invioved	Section Weight	•
÷0M LEG EX	(TN. (WITH STEP BOLT) FOR TOWER TYPE-"DD/I	DE" (132kV, WZ-4) ONE CORNER	
1	L130x130x12H-E350A	117.500	
	Total	117.500	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX; 979 CHENNAL: 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/2 - - BOM/LE17D124/P1D0R/S1D0R/R-0	20 KV -	Date 12-07-2018 Page 1 of 1
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. Reqd. Unit/Ass. Total In Kgs Qty. Weight Weight
+0M LEG EXT	N. (WITHOUT STEP BOLT) FOR TOWER	R TYPE-"DD/DE" (132k	V, WZ-4) ONE CORNER
1 N1SDD22H	L130x130x12H-E350A	5000.00	23,500 1 117,500 117,500
			TOTAL WEIGHT : 117,500

*** - Item welded with another item

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089. INDIA. PHONE : 044 - 22492747 (20 LINES) FAX : 044 - 22494172

Project Order Ref.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV	Date	12-07-2018
Drg No. BOM No.	-		
Sri No	Section Weight		
+0M LEG E	XTN. (WITHOUT STEP BOLT) FOR TOWER TYPE	-"DD/DE" (132kV, WZ-4) ONE CORI	<u>JER</u>
1	L130x130x12H-E350A	117.500	
	Total	117,500	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI ~ 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu - BOM/LE17D124/P1D0E//R-0	400/220 KV		Date Page	12-07-1 1	2018 of 1
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. U	Jnit/Ass. Weight	Total Weight
+0M LEG EXTN	L(COMMON ITEMS) FOR T.T-"DD	/DE"(132kV)ONE CORNER				
1 N1SDD23H	L120x120x8H-E350A	386.00	14.700	1	5.674	5.674
2 N1SDD24H	8MM PLATE H-E350A	110,00 X 386,00	62.800	2	2,666	5.332
3 N1SDD25L	L90x90x6-E250A	6132.00	8.200	1	50.282	50.282
4 N1SDD25R	L90x90x6-E250A	6132.00	8.200	1	5 0. 2 82	50.282
5 N1SDD26L	L45x30x4-E250A	1011.00	2.200	1	2.224	2.224
6 N1SDD26R	L45x30x4-E250A	1011.00	2.200	1	2.224	2.224
7 N1SDD27L	L45x45x4-E250A	1856.00	2.700	1	5.011	5.011
8 N1SDD27R	L45x45x4-E250A	1856.00	2.700	1	5.011	5.011
9 N1SDD28LH	L50x50x4H-E350A	1971.00	3.000	1	5.913	5,913
10 N1SDD28RH	H L50x50x4H-E350A	1971.00	3.000	1	5. 9 13	5.913
11 N1SDD29L	L50x50x4~E250A	2361.00	3.000	1	7.083	7.083
12 N1SDD29R	L50x50x4-E250A	2361.00	3.000	1	7.083	7.083
13 N1SDD30	L45x45x4-E250A	1725.00	2,700	2	4.658	9.316
14 N1SDD31	L45x30x4-E250A	1312.00	2.200	1	2,886	2.886
15 N1SDD32	L45x45x4-E250A	2791.00	2.700	1	7.536	7.536
16 N1SDD32X	L45x45x4-E250A	2791.00	2.700	1	7.536	7.536
17 N1SDD33	L45×45×4-E250A	3705.00	2.700	2	10.004	20.008
18 N1SDD34	5MM PLATE-E250A	110.00 X 150.00	39.250	4	0.648	2.592
19 N1SDD35L	5MM PLATE-E250A	110.00 X 177.00	39,250	1	0.764	.764
20 N1SDD35R	5MM PLATE-E250A	110.00 X 177.00	39.250	1	0.764	.764
			ΤΟΤΔΙ \	WEIGHT	•	283 424

TOTAL WEIGHT:

203.434

^{*** -} Item welded with another item

ECC CONSTRUCTION DIVISION. TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX.: 979 CHENNAI - 600 089. INDIA. PHONE:: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV - BOM/LE17D124/P1D0E/P/R-0	Date Page	 -2018 of 1
Srl S No	Section Invloved	Section Weight	
+0M LEG EX	TN.(COMMON ITEMS) FOR T.T-"DD/DE"(132kV)ONE	ORNER	
1 L	_45x30x4-E250A	7.334	
2 L	_45x45x4-E250A	54.418	
'3 L	_50x50x4-E250A	14.166	
4 L	_90x90x6-E250A	100.564	
5 L	_120x120x8H-E350A	5.674	
6 L	_50x50x4H-E350A	11.826	
7 8	BMM PLATE H-E350A	5.332	
8 5	5MM PLATE-E250A	4.120	
	Total	203.434	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/23 - - BOM/LE17D124/P1D08/S1D08/R-0	20 KV -		Date Page	12-07-2 1 (2018 of 1
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd, l Qty.	Jnit/Ass. Weight	Total Weight
BOLTS & NUT	S OF +0M LEG EXTN. FOR TOWER TYP	E-"DD/DE" (132kV) ON	E CORNER			
1 S1D0B1	M16x35MM LONG(IS:12427)		0.119	16	0.119	1.904
2 S1D0B2	M16x40MM LONG (IS:12427)		0.126	30	0.126	3.780
3 S1D0B3	M16x45MM LONG (IS:12427)		0.134	2	0.134	.268
4 S1D0B4	M16x50MM LONG (IS:12427)		0.142	6	0.142	.852
5 S1D0B5	M16x55MM LONG (IS:12427)		0.150	16	0.150	2,400
6 S1D0B6	M16x3,5mm SPR. WSR-IS3063		0.009	70	0.009	.630
			TOTAL	WEIGHT	:	9,834

*** - Item welded with another item

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNA! - 600 089, INDIA. PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV - - BOM/LE17D124/P1D0B/S1D0B/R-0	<u></u>	ate age	12-0 1	7-2018 of	8 1
Srl No	Section Invloved	Section Weight				
BOLTS & I	NUTS OF +0M LEG EXTN, FOR TOWER TYPE-"DD/DE	" (132kV) ONE CORNER				
1	M16x3.5mm SPR. WSR-IS3063	.630				
2	M16x35MM LONG(IS:12427)	1,904				
3	M16x40MM LONG (IS:12427)	3.780				
4	M16x45MM LONG (IS:12427)	.268				
5	M16x50MM LONG (IS:12427)	.852				
6	M16x55MM LONG (IS:12427)	2.400				
	Total	9.834				

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600.089. INDIA;

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/22 - - BOM/LE17D124/P1D0B/S1D0W/R-0	20 KV -		Date 12-07 Page 1	7-2018 of 1
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. Unit/Ass. Qty. Weight	
PACK WASHI 1 S1D0W1	ERS OF +0M LEG EXTN. FOR TOWER TY M16x5MM ROUND P,WASHER IS2016		E CORNEI 0.018	<u>R</u> 2 0.018	.036
			TOTAL	WEIGHT:	.036

*** - Item welded with another item

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600.089. INDIA.

PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

Project Order Re Drg No. BOM No.	-	Date 12-07-2018 Page 1 of 1
Srl No	Section Invioved	Section Weight
PACK W	ASHERS OF +0M LEG EXTN. FOR TOWER TYPE-"DD/D	E" (132kV) ONE CORNER
1	M16x5MM ROUND P.WASHER IS2016	.036
	Total	_036

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAL-600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/22 - - BOM/LE17D124/P0S1D/S0S1D/R-0	- -		Date Page	12-07-2 1 (2018 of 1
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. L Qty.	Jnit/Ass. Weight	Total Weight
STEP BOLTS O	OF +0M LEG EXTN. FOR TOWER TYPE-	'DD/DE" (132kV) ONE C	ORNER			
1 S0S1D1	M16x175LG SB (50 OD) 2N+1SP		0.423	7 ;	0.423	2.961
			TOTAL	WEIGHT	· · · · · · · · · · · · · · · · · · ·	2.961

*** - Item welded with another item

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV BOM/LE17D124/P0S1D/S0S1D/R-0	Date Page	12-07-2018 1 of 1
Srl S No	Section Invloved	Section Weight	
STEP BOLTS	OF +0M LEG EXTN. FOR TOWER TYPE-"DD/DE" (1	32kV) ONE CORNER	
1 N	M16x175LG SB (50 OD) 2N+1SP	2.961	
	Total	2.961	

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

CONSULTANT:

POWER GRID CORPORATION OF INDIA LTD

PROJECT:

TAMAKOSHI - KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT -400/220 KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE

LOA No. :

073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4D-GA-0404 (SHEET 1 To 5)

BOM No.:

BOM/LE17D124/132kV/DD/004

क्षेत्रकान / विवास केन् अनुमोदित। पावरब्रिड । हेल कारण केल केल केल स्थाप

त्रेश कार्याचनाचा सन्ति।

16 SHEETS:

This document is recommended for approval for construct of 400kV (132kV DIC TAMANUSHI - BARHABISE - KATHMANDU In NEPA

Cha

Approved / Released For Fabrication/Construction Approved / Released For Fabrication/Construction subject to incorporation of comments, modification as noted. Revised drawings/designs required

BILL OF MATERIAL

the comments BASIC BODY FOR TOWER TYPE - "DD/DE" (132kV, WZ-4)

For information and ☐ Not approved

CATI

Nepal Electricity Authority Tamakoshi-Kathmandu 220/400 lov Transmission Line Project Date: 5 9 0 18

Approved By:

- Date:

WEIGHT OF STRUCTURE				
HT MEMBERS: BOM/LE17D124/P1DBS/S1DBH/R-0	2431.250			
MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ETC. BOM/LE17D124/P1DBS/S1DBM/R-0 = 2428.809 BOM/LE17D124/P1DBB/S1DBW/R-0 = 3.967	2432.776			
WEIGHT OF BOLTS & NUTS,SPRING WASHERS: BOM/LE17D124/P1DBB/S1DBB/R-0	261.608			
TOTAL WEIGHT OF STRUCTURE:	5125.634 Kgs			

SUCCESSFULLY TESTED AT CPRI - BENGALURU ON 11th OF JULY 2018

ALEX		PU	BSR	CSF	2	12.07.18	
PREPAR	RED BY	CHECKED BY	REVIEWED BY	APPROVE	D BY	DATE	
REV.	DATE		DESCRIPTION			REVED.	APPD.
0	12.07.18	SUBMISSION FOR APPROVAL AFTER SUCCESSFUL TESTING				BSR	CSR
0.20	and the second s				Alle	Nac	160/

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Project Order Ref.	LE17D124 - Intra-Pith-Kathmandu 40	00/220 KV					<u> </u>
Order Ref. Drg No.	-	_			Date	12-07-	
BOM No.	BOM/LE17D124/P1DBS//R-0				Page	1	of 10
Srl Erection No Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Reqd. Qty.	Unit/Ass. Weight	Total Weight
BASIC BODY	FOR TOWER TYPE-"DD/DE" (132kV,	WZ-4)	·				
1 N1SDD50	L65x65x5-E250A	5812.00		4.900	4	28.479	113.916
2 N1SDD51H	8MM PLATE H-E350A	190,00 X	320.00	62.800	4	3.818	15.272
3 N1SDD52H	L50x50x4H-E350A	3275.00		3.000	4	9.825	39.300
4 N1SDD52X	H L50x50x4H-E350A	3275,00		3.000	4	9,825	39.300
5 N1SDD52A	L65x65x5-E250A	439.00		4.900	4	2.151	8.604
6 N1SDD60S	H L130x130x10H-E350A	5500,00		19.700	2	108,350	216.700
7 N1SDD61H	L130x130x10H-E350A	5500.00		19.700	2	108.350	216,700
8 N1SDD62S	H. L110x110x10H-E350A	3985.00		16.600	2	66.151	132.302
9 N1SDD63H	L110x110x10H-E350A	3985.00		16.600	2	66.151	132.302
10 N1SDD64H	L100x100x8H-E350A	386.00		12.100	4	4.671	18.684
11 N1SDD65H	8MM PLATE H-E350A	90.00 X	386.00	62.800	8	2.182	17.456
12 N1SDD66	2MM PLATE-E250A	80.00 X	185.00	15.700	8	0.232	1.856
13 N1SDD67H	L100x100x8H-E350A	376,00		12.100	4	4,550	18.200
14 N1SDD68H	8MM PLATE H-E350A	X 00,00	376,00	62.800	8	2.125	17.000
15 N1SDD69	L90x90x6-E250A	4600.00		8.200	. 2	37.720	75.440
16 N1SDD69X	L90x90x6-E250A	4600.00		8.200	2	37.720	75.440
17 N1SDD70	L80x80x6-E250A	4600.00		7.300	2	33.580	67.160
18 N1SDD70X	L80x80x6-E250A	4600.00		7.300	2	33.580	67.160
19 N1SDD71	L90x90x6-E250A	2818.00		8.200	2.	23,108	46.216
20 N1SDD71X	L90x90x6-E250A	2818.00		8:200	2	23.108	46.216
21 N1SDD72	L80x80x6-E250A	2818.00		7.300	2	20.571	41.142
22 N1SDD72X	L80x80x6-E250A	2818.00		7.300	2	20.571	41.142
23 N1SDD73	L70x70x5-E250A	286.00		5.300	8	1.516	12.128
24 N1SDD74	5MM PLATE-E250A	60.00 X	286.00	39.250	16	0.674	10.784
25 N1SDD75	L45x30x4-E250A	1 301.00		2.200	8	2.862	22.896
26 N1SDD76	L45x30x4-E250A	1588.00		2.200	4	3.494	13.976
27 N1SDD76X	L45x30x4-E250A	1588,00		2.200	4	3.494	13,976
28 N1SDD77	L60x60x4-E250A	2772.00		3.700	8	10.256	82.048
29 N1SDD78	L45x45x4-E250A	2200.00		2.700	4	5.940	23:760
30 N1SDD78X	L45x45x4-E250A	2200.00		2.700	4	5.940	23.760
31 N1SDD79	L45x30x4-E250A	1267.00		2.200	8	2.787	22.296
32 N1SDD80H	8MM PLATE H-E350A	145.00 X	229 00	62.800	4	2.085	8.340
	•	1 10100 7		02,000	~	2,000	0.040

ECC-CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Project Order Ref.	LE17D124 - Intra-Pith-Kathmandu 40	00/220 KV				
Order Rei. Drg No.	<u>.</u>	_		Date Page	12-07-) 2	
BOM No.	BOM/LE17D124/P1DBS//R-0			rage	Z	of: 10
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. l Qty.	Jnit/Ass. Weight	Total Weight
	OR TOWER TYPE-"DD/DE" (132kV,	W <u>Z-4)</u>				
33 N1SDD81H	L90x90x7H-E350A	5294,00	9.600	2	50.822	101.644
34 N1SDD81XH	L90x90x7H-E350A	5294.00	9.600	2	50.822	101.644
35 N1SDD82	L45x30x4-E250A	917.00	2.200	2	2.017	4.034
36 N1SDD82X	L45x30x4-E250A	917.00	2.200	2	2.017	4.034
37 N1SDD83	L45x30x4-E250A	1674.00	2.200	.2	3,683	7.366
38 N1SDD83X	L45x30x4-E250A	1674.00	2.200	2	3.683	7.366
39 N1SDD84	L45x45x4-E250A	1969.00	2.700	4	5.316	21,264
40 N1SDD85	L45x30x4-E250A	1077.00	2.200	2	2.369	4.738
41 N1SDD85X	L45x30x4-E250A	1077.00	2.200	2	2.369	4.738
42 N1SDD86	L70x70x6-E250A	3017.00	6.300	2	19.007	38.014
43 N1SDD86AH	8MM PLATE H-E350A	140.00 X 207.00	62.800	4	1.820	7.280
44 N1SDD87	8MM PLATE-E250A	145.00 X 227.00	62.800	4	2.067	8.268
45 N1SDD88	L80x80x6-E250A	5250.00	7.300	2	38.325	76.650
46 N1SDD88X	L80x80x6-E250A	5250.00	7.300	2	38.325	76.650
47 N1SDD89	L45x30x4-E250A	920.00	2.200	2	2.024	4.048
48 N1SDD89X	L45x30x4-E250A	920.00	2.200	2	2.024	4,048
49 N1SDD90	L45x30x4-E250A	1631.00	2.200	2	3.588	7.176
50 N1SDD90X	L45x30x4~E250A	1631.00	2.200	2	3.588	7.176
51 N1SDD91	L45x45x4-E250A	1915.00	2.700	4	5.171	20.684
52 N1SDD92	L45x30x4-E250A	1097.00	2.200	2	2.413	4.826
53 N1SDD92X	L45x30x4-E250A	1097.00	2.200	2	2.413	4.826
54 N1SDD93	L70x70x5-E250A	3165.00	5.300	1	16.775	16.775
55 N1SDD93A	L70x70x5-E250A	3207.00	5.300	1	16.997	16,997
56 N1SDD94H	L45x45x4H-E350A	1821.00	2.700	4	4.917	19.668
57 N1SDD95	L45x45x4-E250A	2989.00	2.700	4	8.070	32.280
58 N1SDD96	L45x45x4-E250A	2946.00	2.700	.4	7.954	31.816
59 N1SDD97H	5MM PLATE H-E350A	110.00 X 170.00	39.250	8	0.734	5.872
60 N1SDD98	5MM PLATE-E250A	110.00 X 170,00	39.250	8	0.734	5.872
61 N1SDD99	L45x45x4-E250A	1687.00	2.700	4	4.555	18.220
62 N1SDD100	5MM PLATE-E250A	110,00 X 170,00	39.250	8	0.734	5.872
63 N1SDD102	L45x45x4-E250A	1330,00	2.700	2	3.591	7.182
64 N1SDD102A	L45x45x4-E250A	1337.00	2.700	2	3,610	7.220
				_	-,- IV	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Project	LE17D124 - Intra-Pith-Kathmandu 4	00/220 KV		<u></u>			
Order Ref. Drg No.	· ·				Date	12-07-	
BOM No.	BOM/LE17D124/P1DBS//R-0	•			Page	3	of 10
Srl Erection No Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Reqd. l Qty.	Jnit/Ass. Weight	Total Weight
BASIC BODY	FOR TOWER TYPE-"DD/DE" (132kV	WZ-4)	· · · · · · · · · · · · · · · · · · ·			*** * ***	
65 N1SDD103	L45x30x4-E250A.	2069.00		2.200	2	4.552	9.104
66 N1SDD103/	A L45x30x4-E250A	2044.00		2.200	2	4.497	8.994
67 N1SDD104	L45x30x4-E250A	2005.00		2.200	2	4.411	8.822
68 N1SDD104/	A L45x30x4-E250A	2043.00		2.200	2	4.495	8.990
69 N1SDD105	5MM PLATE-E250A	110.00 X	170.00	39.250	.4	0.734	2.936
70 N1SDD105/	A 5MM PLATE-E250A	110.00 X	170.00	39.250	4	0.734	2.936
71 N1SDD106	5MM PLATE-E250A	110.00 X	165,00	39.250	4	0.712	2.848
72 N1SDD106/	5MM PLATE-E250A	110.00 X	165.00	39.250	4	0.712	2.848
73 N1SDD1308	SH L100x100x8H-E350A	4100.00		12.100	2	49.610	99.220
74 N1SDD131F	H L100x100x8H-E350A	4100.00		12.100	2	49.610	99.220
75 N1SDD132S	SH L75x75x6H-E350A	4175.00		6.800	2	28.390	56,780
76 N1SDD133F	H L75x75x6H-E350A	4175.00		6.800	2	28.390	56.780
77 N1SDD1345	SH L60x60x5H-E350A	6337.00		4.500	2	28.517	57.034
78 N1SDD135H	H L60x60x5H-E350A	6337.00		4.500	2	28.517	57.034
79 N1SDD136F	1 L80x80x6H-E350A	356.00		7.300	4.	2.599	10.396
80 N1SDD137F	6MM PLATE H-E350A	75,00 X	356.00	47.100	8	1.258	10,064
81 N1SDD138	2MM PLATE-E250A	50.00 X	175.00	15.700	8	0.137	1.096
82 N1SDD139	L45x30x4-E250A	992.00		2.200	2	2,182	4.364
83 N1SDD140	L90x90x6-E250A	3469.00		8.200	2	28.446	56.892
84 N1SDD140X	L90x90x6-E250A	3469.00		8.200	2	28.446	56.892
85 N1SDD141H	6MM PLATE H-E350A	107.00 X	216.00	47.100	2	1.089	2.178
86 N1SDD142H	L45x45x4H-E350A	1553.00		2.700	2	4.193	8.386
87 N1SDD142X	H L45x45x4H-E350A	1553,00		2.700	2	4.193	8.386
88 N1SDD143	8MM PLATE-E250A	155.00 X	304.00	62,800	4	2.959	11.836
89 N1SDD144	L90x90x6-E250A	3360.00		8.200	2	27.552	55.104
90 N1SDD144X	L90x90x6-E250A	3360.00		8.200	2	27.552	55.104
91 N1SDD145	L45x30x4-E250A	1297.00		2.200	4	2.853	11.412
92 N1SDD146	L65x65x5-E250A	2562.00		4.900	2	12.554	25.108
93 N1SDD147H	6MM PLATE H-E350A	120.00 X	214.00	47.100	4	1.210	4.840
94 N1SDD148	L45x30x4-E250A	1004.00		2.200	2	2,209	4,418
95 N1SDD149H	L70x70x5H-E350A	3117.00		5.300	2	16.520	33.040
96 N1SDD149XI	H L70x70x5H-E350A	3117.00		5.300	2	16.520	33,040
				-	-		55,510

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Project Order Ref.	LE17D124 - Intra-Pith-Kathmandu 400/	220 KV			D.	40.07.6	2040
Drg No.	her	-			Date Page	12-07-2 4	2018 of 10
BOM No.	BOM/LE17D124/P1DBS//R-0						
Srl Erection No Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Reqd. l Qty.	Jnit/Ass. Weight	Total Weight
	FOR TOWER TYPE-"DD/DE" (132kV, W)	<u>Z-4)</u>	•				
97 N1SDD150		107.00 X	166.00	47.100	2	0.837	1.674
98 N1SDD151		1317.00		2.700	2	3.556	7.112
99 N1SDD151		1317,00		2.700	2	3.55 6	7.112
100 N1SDD152		110.00 ×	215,00	47.100	4	1.114	4.456
101 N1SDD153	,,,,	3037.00		5.300	2	16,096	32.192
102 N1SDD153	XH L70x70x5H-E350A	3037.00		5:300	2	16.096	32.192
103 N1SDD154	L45x30x4-E250A	1102.00		2.200	4	2.424	9.696
104 N1SDD155	H 6MM PLATE H-E350A	110.00 X	199.00	47.100	4	1.031	4.124
105 N1SDD156	H L60x60x4H-E350A	2140.00		3.700	2	7.918	15.836
106 N1SDD157	L45x30x4-E250A	650.00		2.200	2	1.430	2.860
107 N1SDD158	L50x50x4-E250A	2333.00		3.000	2	6.999	13.998
108 N1SDD158	X L50x50x4-E250A	2333.00		3.000	2	6.999	13.998
109 N1SDD159	H L50x50x4H-E350A	2013.00		3.000	2	6.039	12.078
110 N1SDD160	L45x30x4-E250A	2179.00		2.200	2	4.794	9.588
111 N1SDD1603	X L45x30x4-E250A	2179.00		2.200	2	4.794	9.588
112 N1SDD161	L45x30x4-E250A	1856.00		2.200	2	4.083	8.166
113 N1SDD161	X L45x30x4-E250A	1856.00		2.200	2	4.083	8.166
114 N1SDD162	L45x30x4-E250A	1568.00		2.200	2	3.450	6,900
115 N1SDD162	X L45x30x4-E250A	1568.00		2.200	2	3.450	6.900
116 N1SDD163	L45x30x4-E250A	584.00		2.200	2	1.285	2:570
117 N1SDD164I	8MM PLATE H-E350A	109.00 X	166.00	62.800	.2	1.136	2.272
118 N1SDD165	H 8MM PLATE H-E350A	155.00 X	393.00	62.800	1	3.825	3.825
119 N1SDD166	8MM PLATE H-E350A	130.00 X	360.00	62.800	1	2.939	2.9 39
120 N1SDD167	L45x30x4-E250A	1159.00		2.200	2	2.550	5.100
121 N1SDD168	L75x75x6H-E350A	3512.00		6.800	2	23.882	4 7.764
122 N1SDD168X	KH L75x75x6H-E350A	3512.00		6.800	2	23.882	47.764
123 N1SDD169	L50x50x4-E250A	1296,00		3.000	1	3.888	3.888
124 N1SDD169A	L50x50x4-E250A	1296.00		3.000	1	3.888	3.888
125 N1SDD169E	B L50x50x4-E250A	1296.00		3.000	1	3.888	3.888
126 N1SDD1690	L50x50x4-E250A	1296.00		3.000	1	3.888	3.888
127 N1SDD170	6MM PLATE-E250A	109.00 X	478,00	47.100	2	2.454	4.908
128 N1SDD171	5MM PLATE-E250A	101.00 X	120.00	39,250	4	0.476	1.904

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Project	LE17D124 - Intra-Pith-Kathmandu	400/220 KV				
Order Ref. Drg No.	-			Date	12-07-	
BOM No.	BOM/LE17D124/P1DBS//R-0	-		Page	5	of 10
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. t	Jnit/Ass. Weight	Total Weight
BASIC BODY	FOR TOWER TYPE-"DD/DE" (132k)			<u></u>	vv signt	**Cigit
129 N1SDD172	H 8MM PLATE H-E350A	151.00 X 245.00	62,800	4	2.323	9.292
130 N1SDD173	L75x75x6-E250A	3320.00	6,800	.2	22.576	45.152
131 N1SDD173	X L75x75x6-E250A	3320.00	6.800	2	22.576	45.152
132. N1SDD174	L65x65x4-E250A	2722.00	4.000	1	10.888	10.888
133 N1SDD174	A L65x65x4-E250A	2772.00	4.000	1	11.088	11.088
134 N1SDD175	8MM PLATE-E250A	154.00 X 225.00	62.800	4	2 .176	8.704
135 N1SDD176	L65x65x5-E250A	3163.00	4.900	2	15.499	30.998
136 N1SDD176	X L65x65x5-E250A	3163.00	4.900	2	15.499	30.998
137 N1SDD177	L45x45x4-E250A	1122.00	2.700	1	3.029	3.029
138 N1SDD177/	A L45x45x4-E250A	1122.00	2.700	1	3.029	3.029
139 N1SDD1776	B L45x45x4-E250A	1122.00	2.700	1	3.029	3,029
140 N1SDD1770	C L45x45x4-E250A	1122.00	2.700	1	3.029	3.029
141 N1SDD178	6MM PLATE-E250A	82.00 X 323.00	47.100	2	1 .247	2.494
142 N1SDD179	6MM PLATE-E250A	110.00 X 200.00	47.100	4.	1.036	4.144
143 N1SDD180	L65x65x5-E250A	2994.00	4.900	2	14.671	29.342
144 N1SDD180>	C L65x65x5-E250A	2994.00	4.900	2	14,671	29.342
145 N1SDD181	6MM PLATE-E250A	110.00 X 125.00	47.100	4	0.648	2.592
146 N1SDD182F	1 L60x60x4H-E350A	2285.00	3.700	1	8.455	8.455
147 N1SDD182A	H L60x60x4H-E350A	2306,00	3.700	1	8.532	8.532
148 N1SDD183	L45x45x4-E250A	2359.00	2.700	2	6.369	12.738
149 N1SDD183X	L45x45x4-E250A	2359.00	2.700	2	6.369	12.738
150 N1SDD184F	L60x60x4H-E350A	2013.00	3.700	1	7.448	7.448
151 N1SDD184A	.H. L60x60x4H-E350A	2013.00	3.700	1	7,448	7.448
152 N1SDD185	L45x30x4-E250A	2167.00	2.20 0	2	4.767	9.534
153 N1SDD185X	L45x30x4-E250A	2167.00	2,200	2	4.767	9.534
154 N1SDD186	L45x30x4-E250A	1846.00	2.200	2	4.061	8.122
155 N1SDD186X	L45x30x4-E250A	1846.00	2.200	2	4.061	8.122
156 N1SDD187	L45x30x4-E250A	1560.00	2.200	2	3.432	6.864
157 N1SDD187X	L45x30x4-E250A	1560.00	2.200	2	3.432	6.854
158 N1SDD188	L45x30x4-E250A	569.00	2.200	2.	1.252	2.504
159 N1SDD210L	L65x65x5-E250A	3224.00	4.900	1	15,798	15.798
160 N1SDD210R	L65x65x5-E250A	3224.00	4.900	1	15.798	15.798
				-	· · · - · ·	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Ord Drg	der Ref. g No.	LE17D124 - Intra-Pith-Kathmandu 400/220 - - BOM/LE17D124/P1DBS//R-0	r KV	· , .		Date Page	12-07-2	2018 of 10
Srl No	Erection Mark	Section	Length Size(In MM)		Unit Wt. In Kgs	Reqd. l Qty.	Jnit/Ass. Weight	Total Weight
BA:	SIC BODY FO	OR TOWER TYPE-"DD/DE" (132kV, WZ-4)					
	N1SDD211LF		3134.00		3.300	1	10.342	10.342
	N1SDD211R		3134.00		3.300	1	10.342	10.342
163	N1SDD212LF	6MM PLATE H-E350A	177,00 X	282.00	47.100	1	2.351	2.351
164	N1SDD212RI	6MM PLATE H-E350A	177.00 X	282.00	47.100	1	2.351	2.351
165	N1SDD213L	L45x30x4-E250A	1497.00		2.200	·1	3.293	3.293
166	N1SDD213R	L45x30x4-E250A	1497.00		2.200	1	3.293	3.293
167	N1SDD214L	L45x30x4-E250A	563.00		2.200	1	1.239	1.239
16 8	N1SDD214R	L45x30x4-E250A	563.00		2.200	1	1.239	1.239
16 9	N1SDD215H	6MM PLATE H-E350A	100.00 X	182.00	47.100	1	0.857	.857
170	N1SDD216LH	L70x70x5H-E350A	2932.00		5.300	1	15.540	15.540
171	N1SDD216RH	I L70x70x5H-E350A	2932.00		5.300	1	15,540	15.540
172	N1SDD217L	L55x55x4-E250A	2887.00		3.300	1	9.527	9,527
173	N1SDD217R	L55x55x4-E250A	2887.00		3.300	1	9.527	9.527
174	N1SDD218	6MM PLATE-E250A	177:00 X	283.00	47.100	2	2.359	4.718
175	N1SDD219L	L45x30x4-E250A	1439.00		2.200	1	3.166	3.166
176	N1SDD219R	L45x30x4-E250A	1439.00		2.200	1	3.166	3.166
177	N1SDD220	L45x30x4-E250A	520.00		2,200	2	1.144	2.288
178	N1SDD221	5MM PLATE-E250A	105.00 X	203.00	39.250	2	0.837	1.674
179	N1SDD222H	L65x65x4H-E350A	4206.00		4.000	1	16.824	16.824
180	N1SDD222XH	L65x65x4H-E350A	4206.00		4.000	1	16.824	16.824
181	N1SDD223	6MM PLATE-E250A	105.00 X	134.00	47.100	2	0.663	1.326
182	N1SDD224H	L45x45x4H-E350A	1442.00		2.700	1	3.893	3.893
18 3	N1SDD224AH	L45x45x4H-E350A	1442.00		2.700	1	3.893	3.893
184	N1SDD225H	L45x45x4H-E350A	1677.00		2.700	1	4.528	4.528
185	N1SDD226H	L75x75x6H-E350A	669,00		6.800	1	4.549	4.549
186 I	N1SDD226AH	20MM PLATE H-E350A	230.00 X	370.00	157.000	1	13.361	13.361
187	N1SDD227	6MM PLATE-E250A	150.00 X	163.00	47.100	2	1.152	2.304
188	N1SDD228	L65x65x4-E250A	3948.00		4.000	1	15.792	15.792
189	N1SDD228X	L65x65x4-E250A	3948.00		4.000	1	15.792	15. <u>7</u> 92
1 9 0	N1SDD229H	L45x45x4H-E350A	1572.00		2.700	1	4.244	4.244
191 1	N1SDD229AH	L45x45x4H-E350A	1572.00		2.700	1	4.244	4.244
192. N	N1SDD230	L45x45x4-E250A	1365.00		2.700	1	3.686	3.686

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Project	LE17D124 - Intra-Pith-Kathmandu 4	400/220 KV					
Order Ref. Drg No.	- -	*			Date	12-07 7	
BOM No.	BOM/LE17D124/P1DBS//R-0				Page	ľ	of 10
Srl Erection No Mark	Section	Length Size(In MM)		Unit Wt, In Kgs	Reqd. l Qty.	Jnit/Ass. Weight	Total Weight
	FOR TOWER TYPE-"DD/DE" (132kV	, WZ-4)					
193 N1SDD231		3207.00		5.700	1	18.280	18.280
194 N1SDD232		220.00 X	289.00	157.000	2	9.982	19.964
195 N1SDD233		1338.00		2.200	1	2.944	2.944
196 N1SDD233.		1338.00		2.200	1	2.944	2.944
197 N1SDD234		1642.00		2.700	1	4.433	4.433
198 N1SDD235	• • • • • • • • • • • • • • • • • • • •	275.00		2.700	1	0.743	.743
199 N1SDD236		110.00 X	127.00	47.100	2	0.658	1.316
200 N1SDD237	L55x55x4-E250A	4012.00		3.300	1	13.240	13.240
201 N1SDD237	X L55x55x4-E250A	4012.00		3.300	1	13.240	13,240
202 N1SDD238I	H L45x45x4H-E350A	1471.00		2.700	1	3.972	3.972
203 N1SDD238/	AH L45x45x4H-E350A	1 471.00		2.700	1	3.972	3.972
204 N1SDD239	5MM PLATE-E250A	97.00 X	112.00	39.250	2	0.426	.852
205 N1SDD240	5MM PLATE-E250A	97.00 X	117.00	39.250	2	0.445	.890
206 N1SDD260L	-H L60x60x5H-E350A	2999.00		4.500	1	13.496	13.496
207 N1SDD2608	RH L60x60x5H-E350A	2999.00		4.500	1	13.496	13.496
208 N1SDD261L	-H L55x55x4H-E350A	2929.00		3.300	1	9.666	9.666
209 N1SDD261F	RH L55x55x4H-E350A	2929.00		3,300	1	9.666	9.666
210 N1SDD262L	.H 6MM PLATE H-E350A	177.00 X	257.00	47.100	1	2.143	2.143
211 N1SDD262F	RH 6MM PLATE H-E350A	177,00 X	257.00	47.100	1	2.143	2.143
212 N1SDD263L	L45x30x4-E250A	1401.00		2.200	1	3.082	3.082.
213 N1SDD263F	R L45x30x4-E250A	1401.00		2.200	1	3.082	3.082
214 N1SDD264L	. L45x30x4-E250A	570.00		2.200	1	1.254	1.254
215 N1SDD264R	R L45x30x4-E250A	570.00		2.200	1	1.254	1.254
216 N1SDD265H	6MM PLATE H-E350A	100.00 X	174.00	47.10 0	1	0.820	.820
217 N1SDD266L	H L65x65x5H-E350A	2739.00		4.900	1	13.421	13.421
218 N1SDD266R	tH L65x65x5H-E350A	2739.00		4.900	1	13.421	13.421
219 N1SDD267L	H L55x55x4H-E350A	2730.00		3.300	1	9,009	9.009
220 N1SDD267R	H L55x55x4H-E350A	2730.00		3.300	1	9.009	9.009
221 N1SDD268H	6MM PLATE H-E350A	177,00 X	257.00	47.100	2	2.143	4.286
222 N1SDD269L	L45x30x4-E250A	1355.00		2.200	1	2.981	2.981
223 N1SDD269R	L45x30x4-E250A	1355,00		2.200	1	2.981	2.981
224 N1SDD270	L45x30x4-E250A	524.00		2.200	2	1.153	2.306
							

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

Project Order Ref.	LE17D124 - Intra-Pith-Kathmandu 4	00/220 KV			Date	12-07-	2018	
Drg No. BOM No.	- BOM/LE17D124/P1DBS//R-0	-			Page	8	of 10	
Srl Erection No Mark	Section	Length Size(in MM)		Unit Wt. In Kgs	Reqd. l Qty.	Jnit/Ass. Weight	Total Weight	_
BASIC BODY	FOR TOWER TYPE-"DD/DE" (132kV,	·				77 0.9110	- FF OIGHT	_
225 N1SDD271	= =	105.00 X	191.00	39,250	2	0.787	1.574	
226 N1SDD272	H L55x55x4H-E350A	3580.00		3.300	1	11.814	11,814	
227 N1SDD272	XH L55x55x4H-E350A	3580.00		3.300	1	11.814	11.814	
228 N1SDD273	6MM PLATE-E250A	100.00 X	149.00	47.10 0	2	0.702	1,404	
229 N1SDD274	L45x45x4-E250A	1349.00		2.700	1	3.642	3.642	
230 N1SDD274/	A L45x45x4-E250A	1349.00		2:700	1	3.642	3.642	
231 N1SDD275	L45x45x4-E250A	1397.00		2.700	1	3.772	3.772	
232 N1SDD2768	H L75x75x6H-E350A	617.00		6.800	1	4.196	4.196	
233 N1SDD277	20MM PLATE H-E350A	230,00 X	370.00	157.000	1	13.361	13.361	
234 N1SDD278	6MM PLATE-E250A	147.00 X	170.00	47.100	2	1.177	2.354	
235 N1SDD279	L65x65x4-E250A	3499.00		4.000	1	13.996	13,996	
236 N1SDD279	K L65x65x4-E250A	3499.00		4.000	1	13.996	13.996	
237 N1SDD280	L45x45x4-E250A	1356.00		2.700	1	3.661	3.661	
238 N1SDD280A	L45x45x4-E250A	1356.00		2.700	1	3,661	3.661	
239 N1SDD281	L45x45x4-E250A	1270.00		2.700	1	3.429	3.429	
240 N1SDD282F	H L75x75x5H-E350A	2772.00		5.700	1	15.800	15.800	
241 N1SDD283F	20MM PLATE H-E350A	220,00 X	292.00	157.000	2	10.086	20,172	
242 N1SDD285	L45x30x4-E250A	1279.00		2.200	1	2.814	2.814	
243 N1SDD285A	L45x30x4-E250A	1279,00		2.200	1	2,814	2.814	
244 N1SDD286	L45x45x4-E250A	1408.00		2.700	1	3.802	3.802	
245 N1SDD287	L45x45x4-E250A	262.00		2.700	1	0.707	.707	
246 N1SDD288	6MM PLATE-E250A	110.00 X	127.00	47.100	2	0.658	1.316	
247 N1SDD289H	L50x50x4H-E350A	3581.00		3.000	1	10.743	10.743	
248 N1SDD289X	H L50x50x4H-E350A	3581.00		3.000	1	10.743	10.743	
249 N1SDD290	L45x45x4-E250A	1256.00		2.700	1	3:391	3.391	
250 N1SDD290A	L45x45x4-E250A	1256.00		2.700	1	3,391	3.391	
251 N1SDD291H	5MM PLATE H-E350A	97.00 X	115.00	39.250	-2	0.438	.876	
252 N1SDD292H	5MM PLATE H-E350A	97.00 X	118.00	39.250	2	0.449	.898	
253 N1SDD310L	H L60x60x5H-E350A	2888.00		4.500	1	12.996	12.996	
254 N1SDD310R	H L60x60x5H- <u>E</u> 350A	2888.00		4.500	1	12.996	12.996	
.255 N1SDD311LI	H L55x55x4H-E350Å	2916,00		3.300	1	9.623	9.623	
256 N1SDD311R	H L55x55x4H-E350A	2916.00		3.300	1	9.623	9.623	
					•		0.020	

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNA! - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

O	roject rder Ref.	LE17D124 - Intra-Pith-Kathmandu 400/	220 KV	<u>.</u>		Date	12-07-	2018
	rg No. OM No.	BOM/LE17D124/P1DBS//R-0	-			Page	9	of 10
	Erection Mark	Section	Length Size(In MM)	, <u> </u>	Unit Wt. In Kgs	Reqd. (Qty.	Jnit/Ass. Weight	Total Weight
		OR TOWER TYPE-"DD/DE" (132kV, W	Z-4)					
	N1SDD312LI		199.00 X	243.00	47.100	1	2.278	2.278
258		H 6MM PLATE H-E350A	199.00 ×	243.00	47.100	1	2.278	2.278
259	N1SDD313L	L45x30x4-E250A	1398.00		2.200	1	3.076	3.076
260		L45x30x4-E250A	1398.00		2.200	1	3.076	3.076
261		L45x30x4-E250A	647,00		2.200	1	1.423	1.423
262	N1SDD314R	L45x30x4-E250A	647.00		2.200	1	1.423	1.423
263	N1SDD315H	6MM PLATE H-E350A	100.00 X	158.00	47.100	1	0.744	.744
	N1SDD316LH		2740.00		4.500	1	12.330	12.330
265	N1SDD316RI	H L60x60x5H-E350A	2740.00		4.500	1	12.330	12.330
266	N1SDD317L	L55x55x4-E250A	2818.00		3.300	1	9.299	9.299
267	N1SDD317R	L55x55x4-E250A	2818.00		3.300	1	9.299	9.299
268	N1SDD318	6MM PLATE-E250A	199.00 X	243.00	47.100	2	2.278	4.556
269	N1SDD319L	L45x30x4-E250A	1396.00		2.200	1	3.071	3.071
270	N1SDD319R	L45x30x4-E250A	1396.00		2.200	1	3.071	3.071
271	N1SDD320	L45x30x4-E250A	598.00		2.200	2	1.316	2.632
272	N1SDD321	5MM PLATE-E250A	100.00 X	162.0 0	39.250	2	0.636	1.272
273	N1SDD322H	L45x45x4H-E350A	2972.00		2.700	1	8.024	8.024
274	N1SDD322XH	L45x45x4H-E350A	2972.00		2.700	1	8,024	8.024
2 75	N1SDD323	6MM PLATE-E250A	100.00 X	143.00	47.100	2	0.674	1.348
276	N1SDD324	L45x45x4-E250A	1323.00		2.700	1	3.572	3.572
277	N1SDD324A	L45x45x4-E250A	1323.00		2.700	1	3.572	3,572
278	N1SDD325	L45x45x4-E250A	1176.00		2.700	1	3.175	3.175
279	N1SDD326H	L75x75x6H-E350A	524.00		6.800	1	3.563	3.563
280	N1SDD327H	20MM PLATE H-E350A	230.00 X	370.00	157.000	1	13.361	13.361
281	N1SDD328	6MM PLATE-E250A	155,00 X	160.00	47.100	2	1.168	2.336
282	N1SDD329	L60x60x4-E250A	3193.00		3.700	1	11.814	11.814
283	N1SDD329X	L60x60x4-E250A	3193.00		3,700	1	11.814	11.814
284	N1SDD330	L45x45x4-E250A	1134.00		2.700	1	3.062	3.062
285	N1SDD330A	L45x45x4-E250A	1134.00		2.700	1	3.062	3.062
286	N1SDD331	L45x45x4-E250A	1289.00		2.700	1	3.480	3.480
287	N1SDD332H	L75x75x5H-E350A	2306.00		5.700	1	13.144	13.144
288	N1SDD333H	20MM PLATE H-E350A	225.00 X	290.00	157.000	2	10.244	20,488

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 40 - - BOM/LE17D124/P1DBS//R-0	0/220 KV -		Date Page	12-07-7 10	2018 of 10
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. t Qty.	Jnit/Ass. Weight	Total Weight
BASIC BODY	FOR TOWER TYPE-"DD/DE" (132kV, 1	WZ-4)				
289 N1SDD335	L45x45x4-E250A	2536.00	2.700	1	6.847	6.847
290 N1SDD335	X L45x45x4-E250A	2536.00	2.700	1	6.847	6.847
291 N1SDD336	6MM PLATE-E250A	101.00 X 107.00	47.100	4	0.509	2.036
292 N1SDD337	L45x45x4-E250A	1366.00	2,700	1	3.688	3.688
293 N1SDD337/	A L45x45x4-E250A	1366.00	2,700	1	3.688	3.688
294 N1SDD338	L45x45x4-E250A	1173,00	2,700	1	3.167	3.167
295 N1SDD339	L45x45x4-E250A	240.00	2.700	1	0.648	.648
296 N1SDD340	6MM PLATE-E250A	110.00 X 130.00	47.100	1	0.674	.674
297 N1SDD341	L45x45x4-E250A	3356.00	2.700	1	9.061	9.061
298 N1SDD341>	C L45x45x4-E250A	3356.00	2.700	1	9.061	9.061
299 N1SDD342	L45x45x4-E250A	1035.00	2.7 0 0	1	2.795	2,795
300 N1SDD342A	A L45x45x4-E250A	1035,00	2.700	1	2.795	2.795
301 N1SDD343	5MM PLATE-E250A	97.00 X 124.00	39.250	2	0.472	.944
302 N1SDD344	5MM PLATE-E250A	97.00 X 120.00	39.250	2	0.457	,914
			TOTAL V	VEIGHT		1860 050

TOTAL WEIGHT:

4860.059

*** - Item welded with another item

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089. INDIA, PHONE : 044 - 22492747 (20 LINES) FAX : 044 - 22494172

Project Order Ref	LE17D124 - Intra-Pith-Kathmandu 400/220 KV	D	
Drg No.	·	Date 12-07-2018 Page 1 of 2	
BOM No.	BOM/LE17D124/P1DBS/P/R-0		
Sri No	Section Invloved	Section Weight	****
BASIC BO	DDY FOR TOWER TYPE-"DD/DE" (132kV, WZ-4)		
1.	L45x30x4-E250A	378.614	
2	L45x45x4-E250A	329.825	
3	L50x50x4-E250A	43.548	
4	L55x55x4-E250A	64.132	
5	L60x60x4-E250A	105.676	
.6	L65x65x5-E250A	299.904	
7	L65x65x4-E250A	81.552	
8	L70x70x5-E250A	45.900	
.9	L70x70x6-E250A	38.014	
10	L75x75x6-E250A	90.304	
11	L80x80x6-E250A	369.904	
12	L90x90x6-E250A	467.304	
13	L45x45x4H-E350A	99.891	
14	L55x55x4H-E350A	100.908	
15	L60x60x4H-E350A	47.719	
16	L60x60x5H-E350A	191.712	
17	L65x65x4H-E350A	33.648	
18	L65x65x5H-E350A	26.842	
19	L70x70x5H-E350A	161.544	
20	L75x75x5H-E350A	47.224	
21	L75x75x6H-E350A	221.396	
22	L80x80x6H-E350A	10.396	
23	L90x90x7H-E350A	203.288	
24	L100x100x8H-E350A	235.324	
25	L110x110x10H-E350A	264.604	
26	L130x130x10H-E350A	433.400	
27	L50x50x4H-E350A	112.164	
28	5MM PLATE H-E350A	9.220	
29	6MM PLATE H-E350A	47.587	
30	8MM PLATE H-E350A	83.676	
31	20MM PLATE H-E350A	100.707	
32	2MM PLATE-E250A	2.952	
33	5MM PLATE-E250A	42.546	
34	6MM PLATE-E250A	39.826	
35	8MM PLATE-E250A	28.808	

MOUNT POONAMALLE ROAD, PO BOX; 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV - - BOM/LE17D124/P1DBS/P/R-0		Date Page	12-0 2	7-201 of	8
Srl No	Section Invloved	Section Weight				
BASIC BOD	DY FOR TOWER TYPE-"DD/DE" (132kV, WZ-4)					
	Total	4860.059	-			

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/2 - - BOM/LE17D124/P1DBB/S1DBB/R-0	220 KV -		Date Page	12-07-2 1	2018 of 1
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. l Qty.	Jnît/Ass. Weight	Total Weight
BOLTS & NUT	S OF BASIC BODY FOR TOWER TYPE-	"DD/DE" (132kV)				
1 S1DBB1	M16x35MM LONG(IS:12427)		0.119	526	0,119	62.594
2 S1DBB2	M16x40MM LONG (IS:12427)		0.126	562	0.126	70.812
3 S1DBB3	M16x45MM LONG (IS:12427)		0.134	125	0.134	16.750
4 S1DBB4	M16x50MM LONG (IS:12427)		0.142	243	0.142	34.506
5 S1DBB5	M16x55MM LONG (IS:12427)		0.150	110	0.150	16.500
6 S1DBB6	M16x60MM LONG (IS:12427)		0.158	4	0,158	.632
7 S1DBB7	M16x3.5mm SPR, WSR-IS3063		0.009	1570	0.009	14.130
8 S1DBB8	M16x175LG SB (50 OD) 2N+1SP		0.423	108	0.423	45.684
		 	TOTAL \	VEIGHT	:	261.608

*** - Item welded with another item

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA. PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

Project Order Ref Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV - BOM/LE17D124/P1D8B/S1DBB/R-0		Date Page	12-0 1	7-2018 of	8
Srl No	Section Invloved	Section Weight		······································		
BOLTS &	NUTS OF BASIC BODY FOR TOWER TYPE-"DD/DE" (132kV)					
1	M16x3.5mm SPR. WSR-IS3063	14.130				
2	M16x35MM LONG(IS:12427)	62.594				
3	M16x40MM LONG (IS:12427)	70.812				
4	M16x45MM LONG (IS:12427)	16.750				
5	M16x50MM LONG (IS:12427)	34,506				
6	M16x55MM LONG (IS:12427)	16.500				
7	M16x60MM LONG (IS:12427)	.632				
8	M16x175LG SB (50 OD) 2N+1SP	45.684				
	Total	261.608	-			

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494

BILL OF MATERIAL

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/22 - - BOM/LE17D124/P1DB8/S1DBW/R-0	- 20 KV		Date Page	12-07-2 1	2018 of 1
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. L Qty.	Init/Ass. Weight	Total Weight
PACK WASH	ERS OF BASIC BODY FOR TOWER TYPE	-"DD/DE" (132kV)	·			
1 S1DBW1	M16x4MM ROUND P.WASHER IS2016		0.014	1 7 ·	0.014	.238
2 S1DBW2	M16x5MM ROUND P.WASHER IS2016		0.018	47	0.018	.846
3 S1DBW3	M16x6MM ROUND P.WASHER IS2016	,	0.021	34	0.021	.714
4 S1DBW4	M16x8MM ROUND P.WASHER IS2016		0.028	41	0.028	1.148
5 S1DBW5	M16x10MM ROUND P.WASHER IS2016		0.036	20	0.036	.720
6 \$1DBW6	M16x12MM ROUND P.WASHER IS2016		0.043	7	0.043	.301
			TOTAL	VEIGHT	 -	3.967
			IOIAL	AFTOLLI	•	3.307

*** - Item welded with another item

MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089. INDIA.

PHONE:: 044 - 22492747 (20 LINES) FAX:: 044 - 22494172

Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV - - BOM/LE17D124/P1DBB/S1DBW/R-0		Date Page	12-0 1	07-201 of	8 1
Srl No	Section Invloved	Section Weight				
PACK WAS	SHERS OF BASIC BODY FOR TOWER TYPE-"DD/DE" (132kV)	<u></u>				
1	M16x4MM ROUND P.WASHER IS2016	.238				
2	M16x5MM ROUND P.WASHER IS2016	.846				
3	M16x6MM ROUND P.WASHER IS2016	.714				
4	M16x8MM ROUND P.WASHER IS2016	1.148				
5	M16x10MM ROUND P.WASHER IS2016	.720				
6	M16x12MM ROUND P.WASHER IS2016	.301				
	Total Total	3.967	_			

L&T Construction

Power Transmission & Distribution

CLIENT:

NEPAL ELECTRICITY AUTHORITY

(An Undertaking of Government of Nepal)

PROJECT:

TAMAKOSHI - KATHMANDU 220/400 KV TRANSMISSION LINE PROJECT -400/220 KV AND 132 KV BARHABISE - KATHMANDU TRANSMISSION LINE

LOA No.: 073/74-201 Dated: 24.04.2017

DRG. No.: 017123-T-TL-4D-GA-0401

BOM No.: BOM/LE17D124/132kV/DD/001

NO OF SHEETS:

4

STUB & CLEATS FOR TOWER TYPE - "DD/DE" (132kV, WZ-4) testing of tower

(-4.5M TO +9M EXTN.)

Approved / Released For F truction Subject to incorpora truction dification as noted. Remard or surrey. ☐ To be resubmitted for approve porating the comments For information and record

> Nepal Electricity Authority Tamakoshi-Fuormandu 22

0/400 kv eject 10:29/6/018 ate: 29/6/18

☐ Not approved

WEIGHT OF STRUCTURE		(Carrie
HT MEMBERS: BOM/LE17D124/P1DSC/S1DSC/R-0	400.500	Checkin
MS MEMBERS INCLUDING PACK WASHERS AND ACCESSORIES ETC.		Approvi
WEIGHT OF BOLTS & NUTS, SPRING WASHERS: BOM/LE17D124/P1DSB/S DSB/R-0	9.408	
निर्माण हेतु अनुनोवित TOTAL WEIGHT OF STRUCTURE:	409.908 Kg	gs

447

बाते वी के विकास क्षेत्र क्षेत्र कार्या आवावित वार्या कार्या ार्या कार् কাশিয়ানিকী (বাই লার্ছণ) শুভবাদ, (ছবিয়াণা) This document is recommended for approval for construction

AL	EX	PU	BSR	CSF	?	22.1	2.17
PREPA	RED BY	CHECKED BY	REVIEWED BY	APPROVI	ED BY	DA	ATE
REV.	DATE		DESCRIPTION		CHKD.	REVED.	APPD
0	22.12.17	FIRST SI	UBMISSION FOR APPROVAL	L	PÚ	BSR	(ÉSR

THIS IS PROPRIETARY ITEM AND DESIGN RIGHT IS STRICTLY RESERVED WITH NEPAL ELECTRICITY AUTHORITY (NEA) UNDER NO CIRCUMSTANCES THIS DRAWING SHALL BE USED BY ANYBODY WITHOUT PRIOR PERMISSION FROM NEA IN WRITING.

ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

MOUNT POONAMALLE ROAD, PO BOX; 979 CHENNAI - 600 089. INDIA.

PHONE: 044 - 22704000 FAX: 044 - 22705494.

LE17D124 - Intra-Pith-Kathmandu 400/2	20.KV		Date 22-12-	
BOM/LE17D124/P1DSC/S1DSC/R-0	-		Page 1	of 1
Section	Length Size(In MM)	Unit Wt. In Kgs	Reqd. Unit/Ass. Qty. Weight	Total Weight
S FOR TOWER TYPE-"DD/DE" (132kV,	WZ-4)			
L130x130x12H-E350A	3683.00	23.500	4 ~ 86.551	346.204
L65x65x6H-E350A	180.00	5.800	8 🗸 1.044	8.352
L65x65x6H-E350A	180.00	5.800	8 🗸 1.044	8.352
L65x65x6H-E350A	250.00	5.800	16 🖍 1.450.	23.200
6MM PLATE H-E350A	95.00 X 402.00	47.100	8 🗸 1.799	14.392
				400.500
	BOM/LE17D124/P1DSC/S1DSC/R-0 Section S FOR TOWER TYPE-"DD/DE" (132kV, L130x130x12H-E350A L65x65x6H-E350A L65x65x6H-E350A L65x65x6H-E350A	BOM/LE17D124/P1DSC/S1DSC/R-0 Section Length Size(In MM) S FOR TOWER TYPE-"DD/DE" (132kV, WZ-4) 130x130x12H-E350A L130x130x12H-E350A 3683.00 L65x65x6H-E350A 180.00 L65x65x6H-E350A 180.00 L65x65x6H-E350A 250.00	BOM/LE17D124/P1DSC/S1DSC/R-0 Section Length Size(In MM) In Kgs S FOR TOWER TYPE-"DD/DE" (132kV, WZ-4) L130x130x12H-E350A 180.00 L65x65x6H-E350A 180.00 L65x65x6H-E350A 180.00 L65x65x6H-E350A 250.00 5.800 6MM PLATE H-E350A 95.00 X 402.00 47.100	Date 22-12-Page 1 BOM/LE17D124/P1DSC/S1DSC/R-0 Section Length Size(In MM) Unit Wt. Reqd. Unit/Ass. In Kgs Qty. Weight S FOR TOWER TYPE-"DD/DE" (132kV, WZ-4) L130x130x12H-E350A 3683.00 23.500 4 86.551 L65x65x6H-E350A 180.00 5.800 8 1.044 L65x65x6H-E350A 250.00 5.800 16 1.450

^{*** -} Item welded with another item

MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089, INDIA.

PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

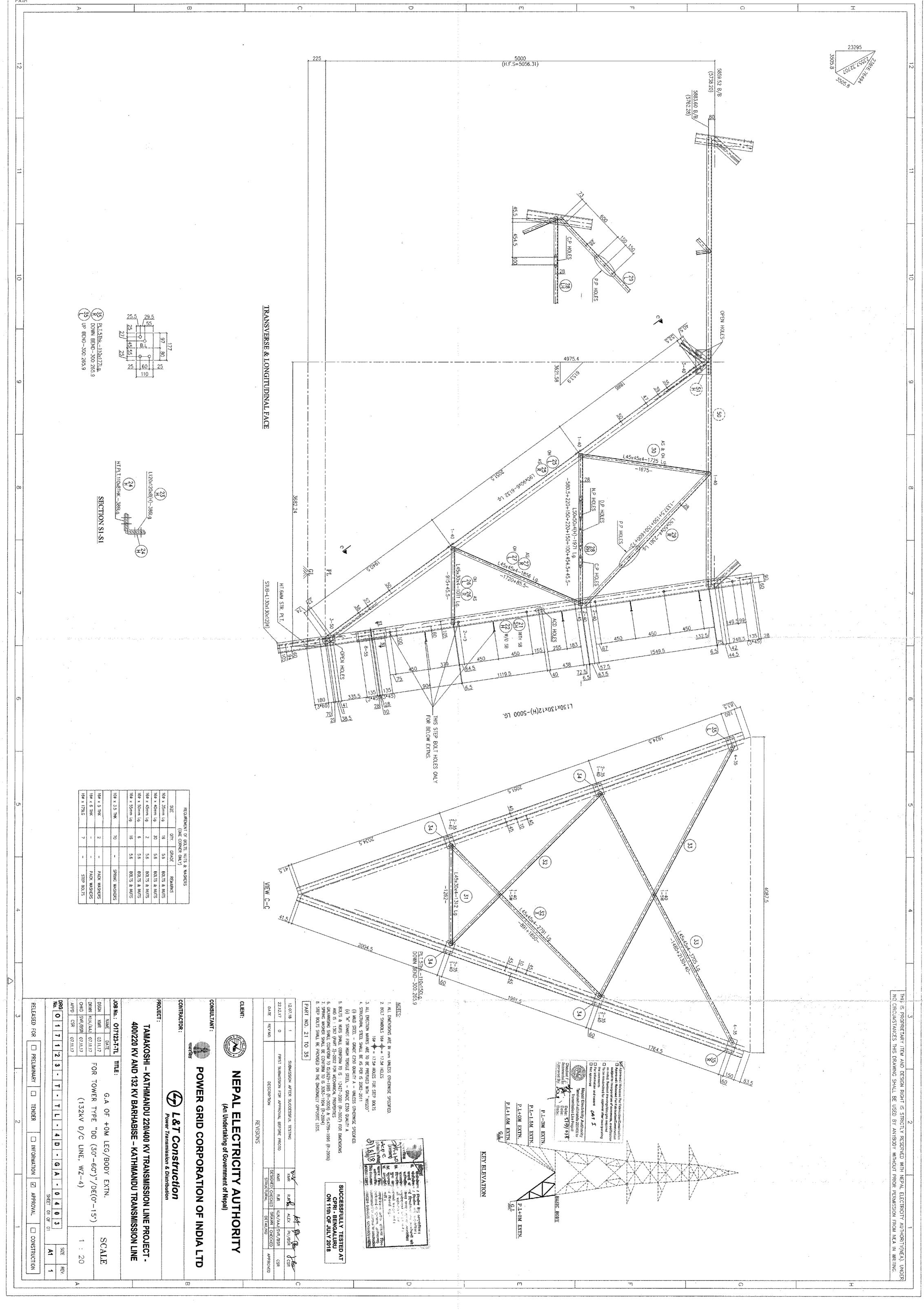
Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV - - BOM/LE17D124/P1DSC/S1DSC/R-0		Date Page	2 2 -1	2-201 of	7 [.] 1
Şrl No	Section Invloved	Section Weigh	t			
STUB & CLE	EATS FOR TOWER TYPE-"DD/DE" (132kV, WZ-4)					
1	L65x65x6H-E350A	39.904				
2	L130x130x12H-E350A	346.204				
.3	6MM PLATE H-E350A	14.392	:			
	Total	400.500	_			

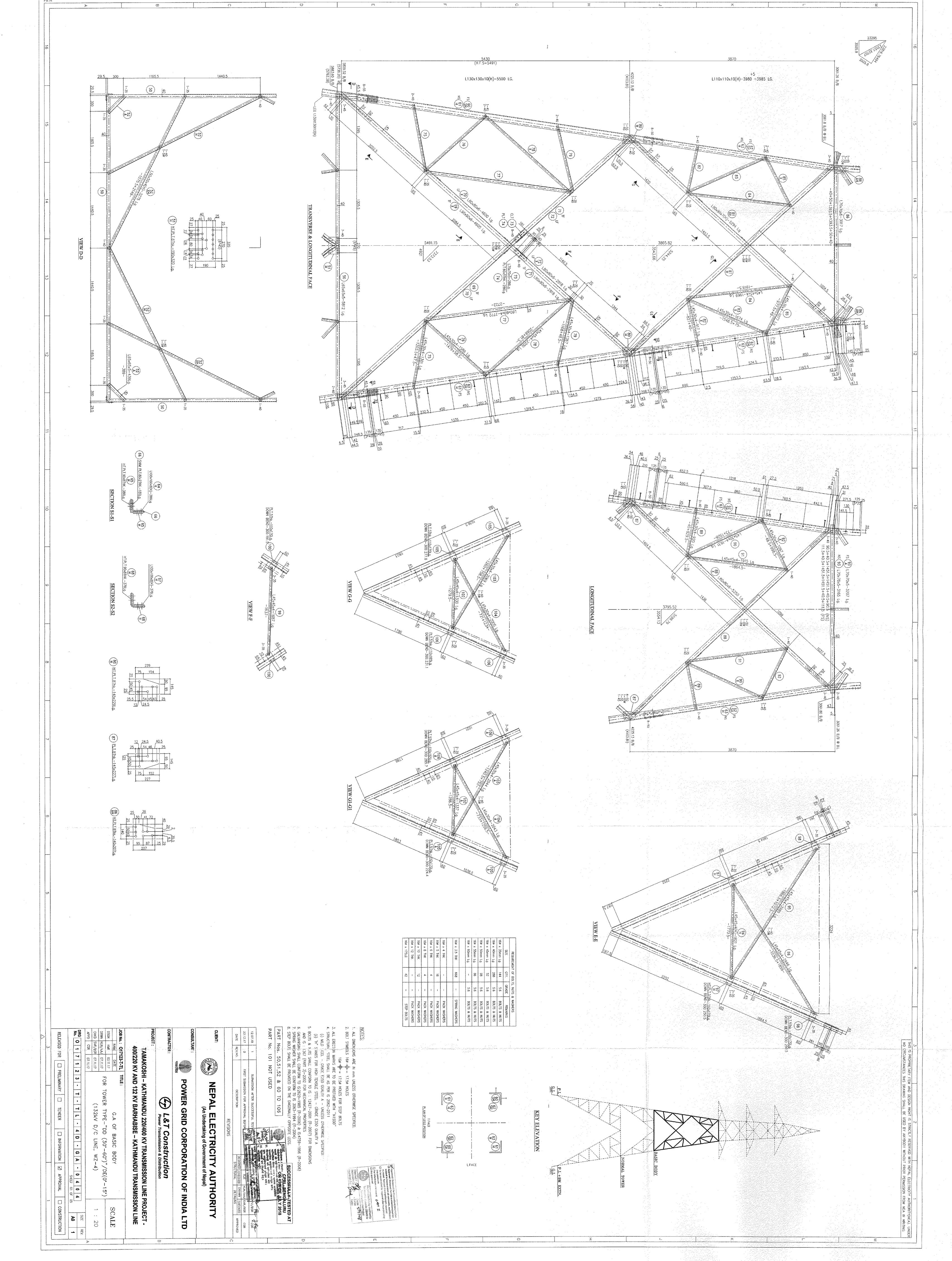
ECC CONSTRUCTION DIVISION TRANSMISSION LINE DESIGN

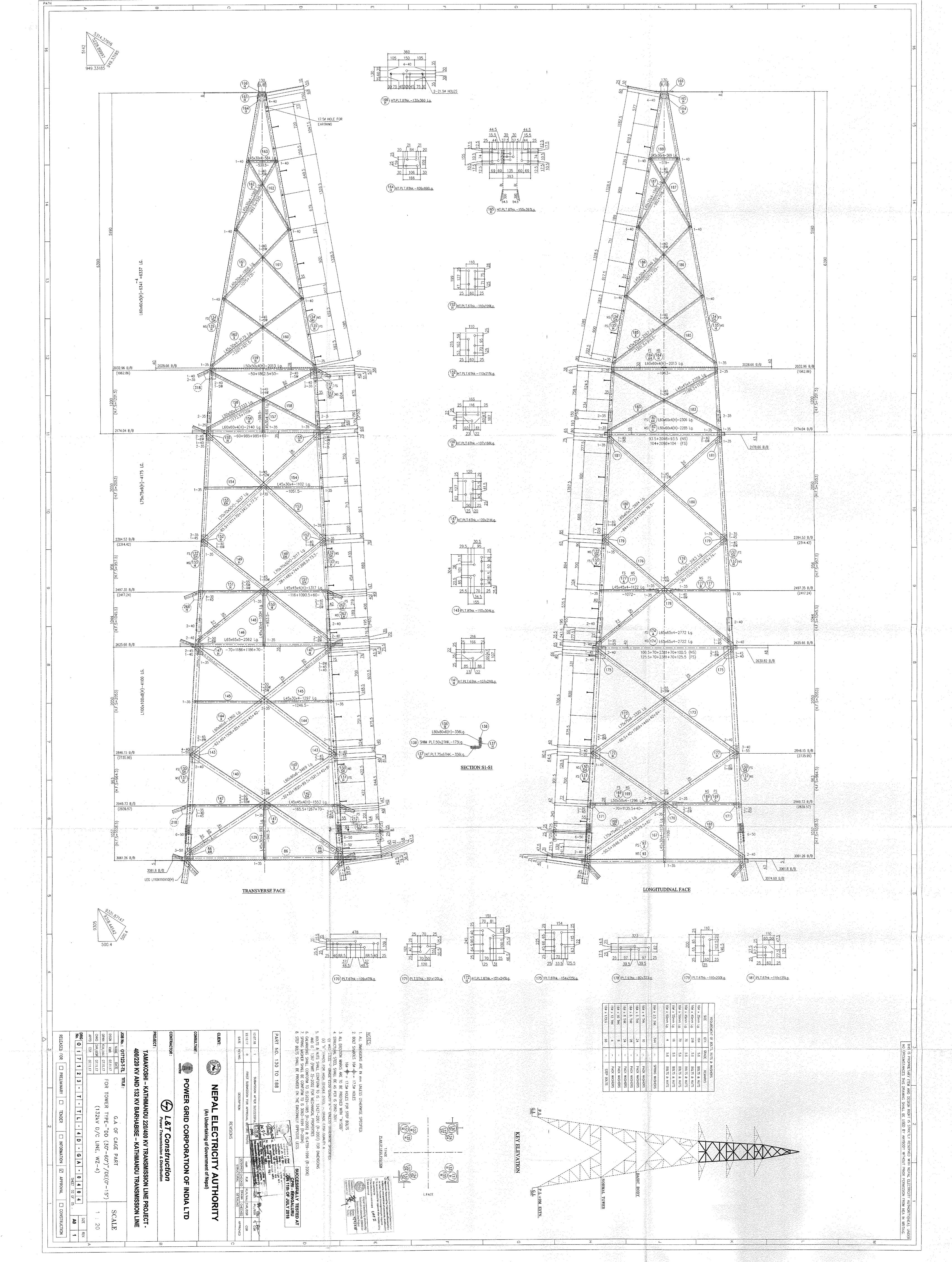
MOUNT POONAMALLE ROAD, PO BOX: 979 CHENNAI - 600 089, INDIA.

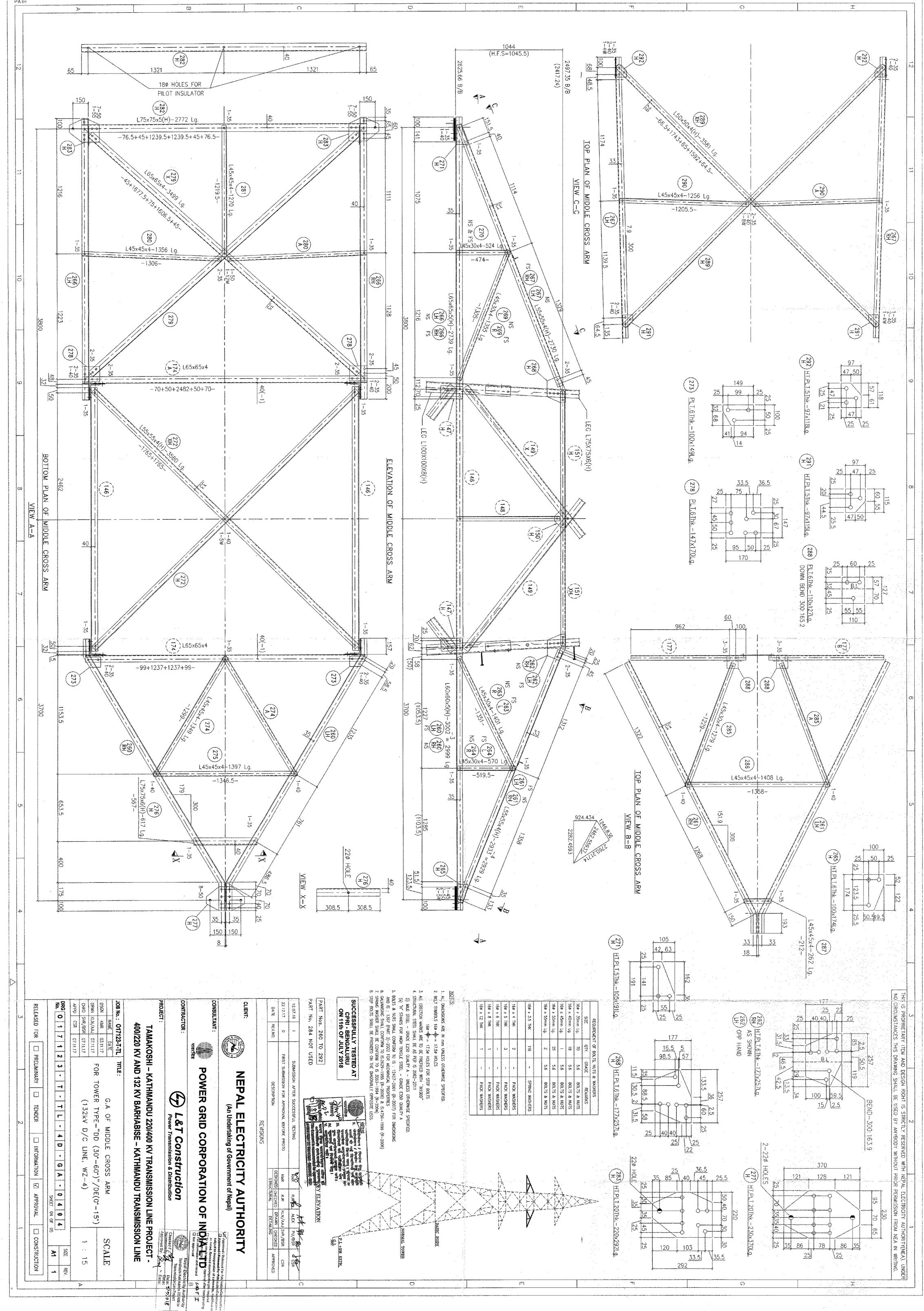
PHONE: 044 - 22704000 FAX: 044 - 22705494

Project Order Ref. Drg No.	LE17D124 - Intra-Pith-Kathmandu 400 - -)/220 KV 		Date Page	22-12-1 1	2017 of 1
BOM No.	BOM/LE17D124/P1DSB/S1DSB/R-0					
Srl Erection No Mark	Section	Length Size(In MM)	Unit Wt. In Kgs	•	Unit/Ass. Weight	Total Weight
BOLTS & NUT	IS OF STUB & CLEATS FOR TOWER 1	YPE-"DD/DE" (132kV, V	ΝΖ <u>-4)</u>			
1 S1DSB1	M16x45MM LONG (IS:12427)		0.134	32	0,134	4.288
2 S1DSB2	M16x50MM LONG (IS:12427)		0.142	32	0.142	4.544
3 \$1D\$B3	M16x3,5mm SPR, W\$R-IS3063		0,009	64	0.009	.576
			TOTAL	WEIGHT		9.408


^{*** -} Item welded with another item




MOUNT POONAMALLE ROAD, PO BOX : 979 CHENNAI - 600 089, INDIA.


PHONE: 044 - 22492747 (20 LINES) FAX: 044 - 22494172

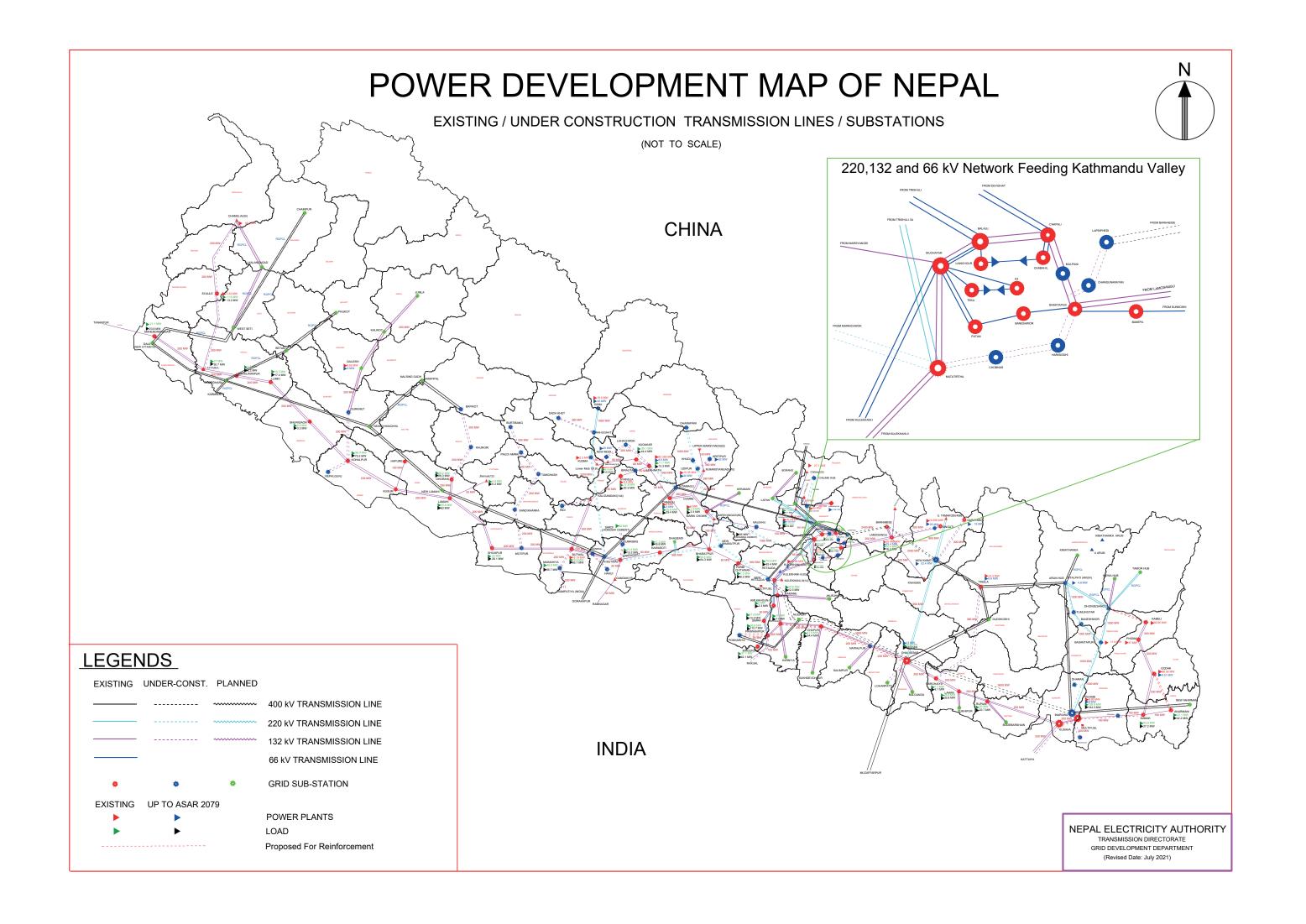
Project Order Ref. Drg No. BOM No.	LE17D124 - Intra-Pith-Kathmandu 400/220 KV - - BOM/LE17D124/P1DSB/S1DSB/R-0		Date Page	22-12 1	:-2017 of	1
Srl S No	Section Invloved	Section Weight				
BOLTS & NU	TS OF STUB & CLEATS FOR TOWER TYPE-"DD/D	E" (132kV, WZ-4)		. .		
1 1	/116x3.5mm SPR. WSR-!S3063	.576				
2 N	//16x45MM LONG (IS:12427)	4.288				
3 N	//16x50MM LONG (IS:12427)	4,544				
	Total	9.408				

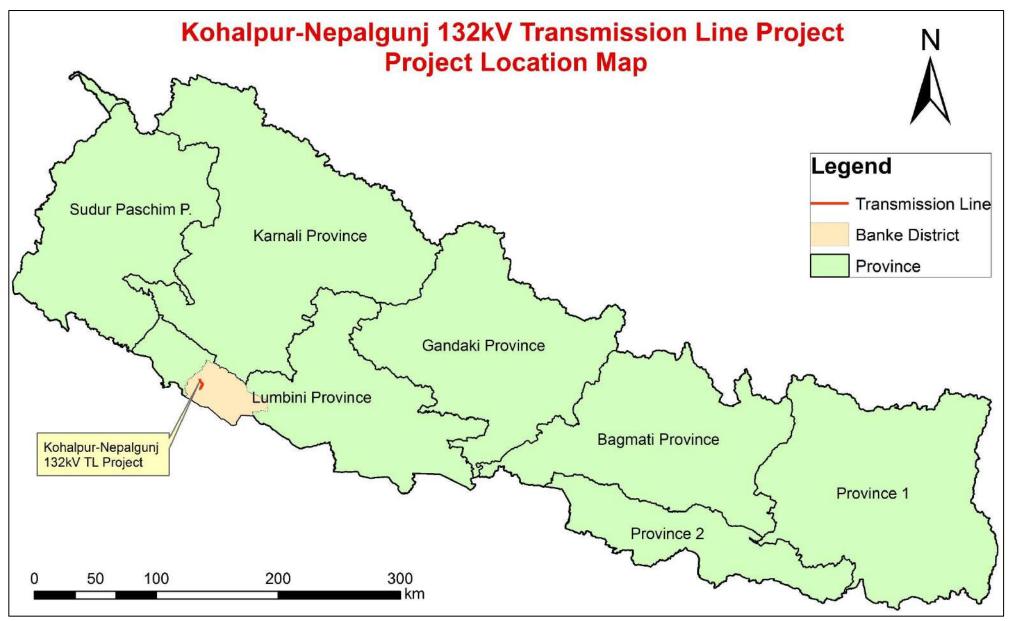
Turnkey Bidding Document

Kohalpur Nepalgunj 132 kV TLP

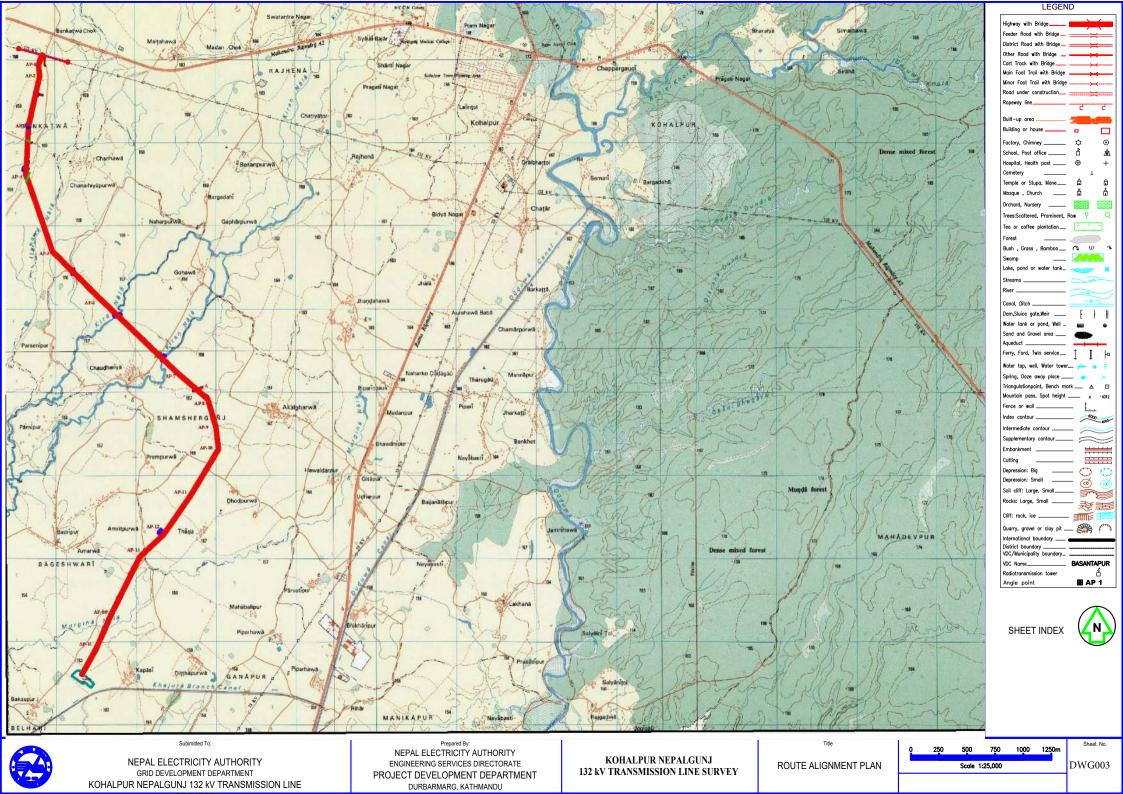
VOLUME – II-A OF III CHAPTER - 15 TENDER DRAWINGS

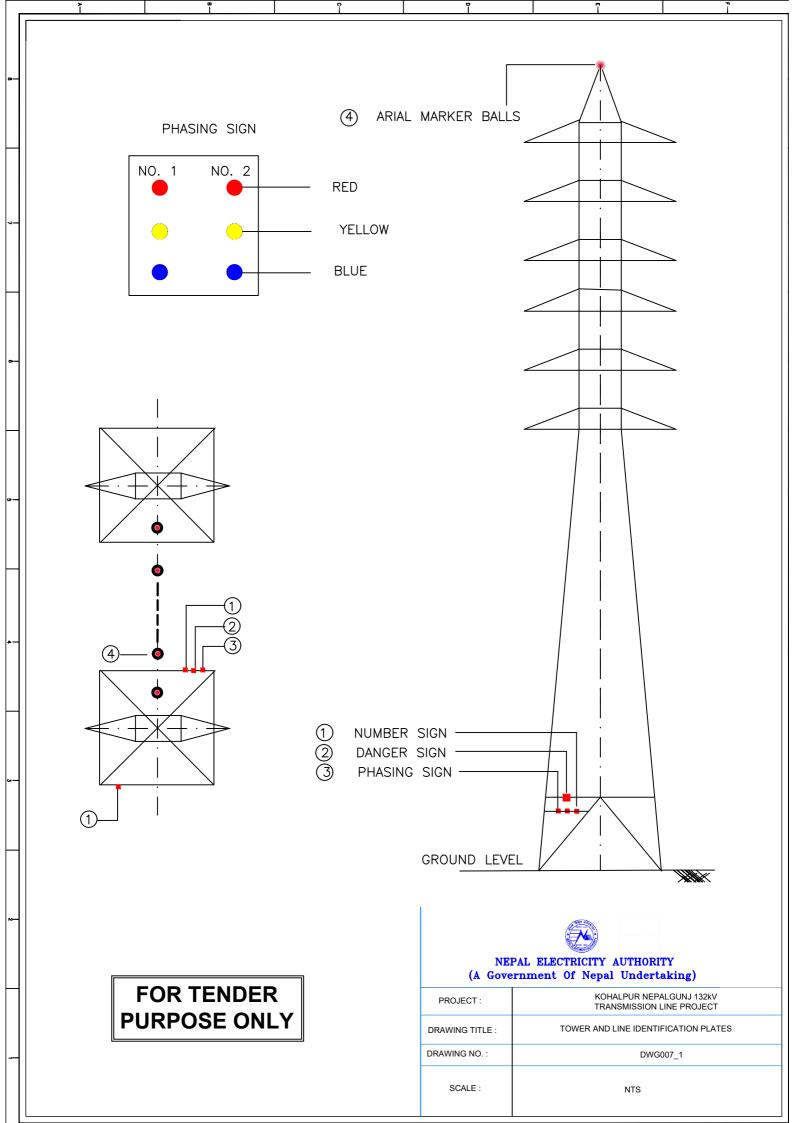
Turnkey Bidding Document

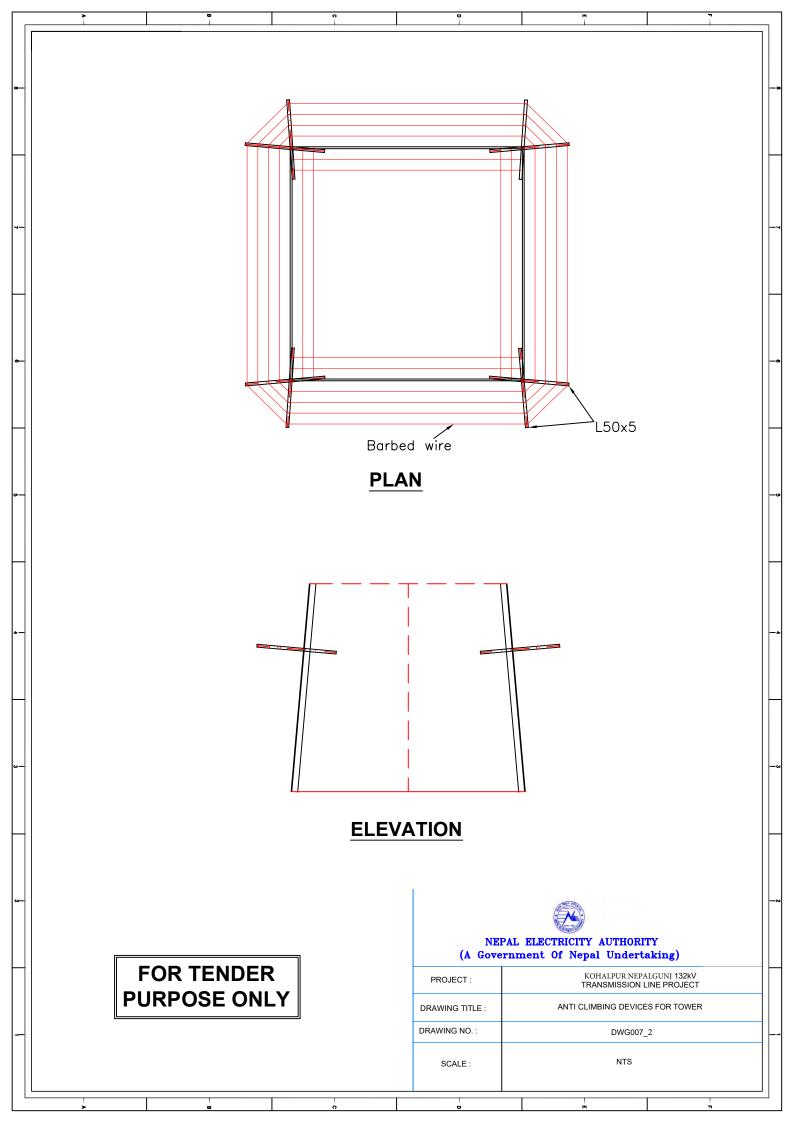

Kohalpur Nepalgunj 132 kV TLP

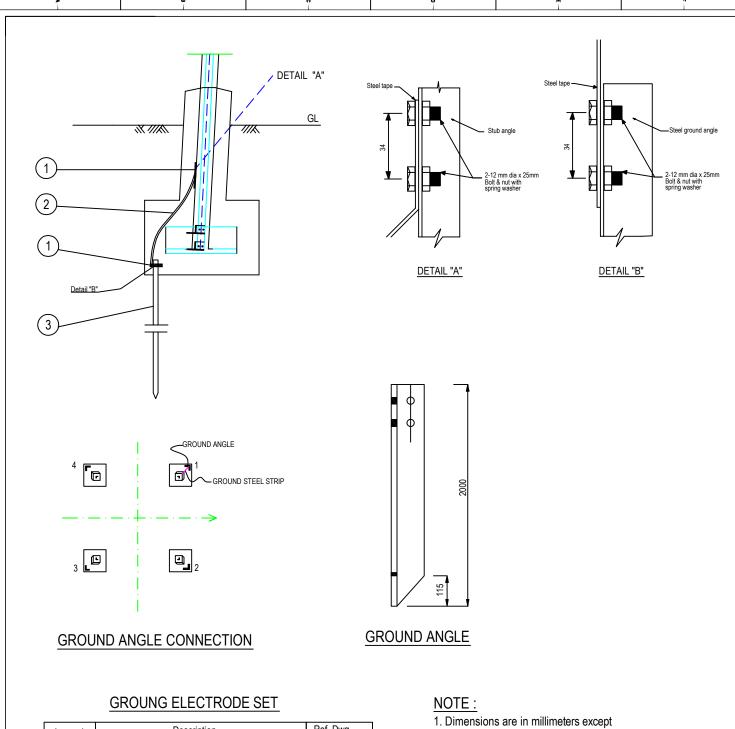

LIST OF TENDER DRAWINGS

SI. No.	Drawing Number	Drawing Description
1.	DWG001	Power Map of Nepal
2.	DWG002	Location Map of Kohalpur Nepalgunj 132 kV Transmission Line Project
3.	DWG003-1, 3-2, 3-3, 3-4, 3-5	Route Alignment of 132kV Transmission Line from Kohalpur to Nepalgunj on Topographic Map
5.	DWG007-1	Tower and Line Identification Plates
6.	DWG007-2	Anti Climbing Devices for Tower
7.	DWG008	Tower Grounding
8.	DWG009	Tower Counterpoise Connection
9.	DWG010	Sample Visual Chart
10.	DWG011	Tower Outline Configuration
11.	DWG012	Conceptual Foundation Drawing

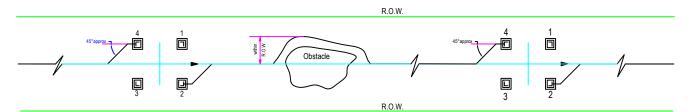

Procurement of Plant



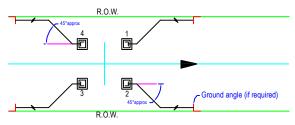


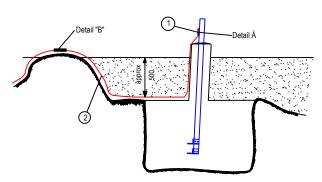

DWG002: Project Location Map

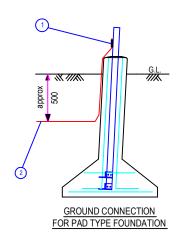
Source: GIS Analysis and Department of Survey

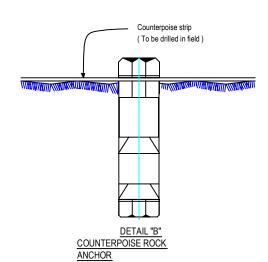

Legend	Description	Ref. Dwg.
1	1 2-12 mm dia x 25 mm galv.steel bolt & nut	
	with spring washer.	
2	Galv. steel tape 25mm x 3 mm thickness.	
3	Galv. steel angle, 50x50x5 - 4	
	1,000 mm long.	

- 1. Dimensions are in millimeters excep otherwise specified.
- 2. All grounding material shall have galvanizing weight of not less than specified in ASTM A 123+30%.

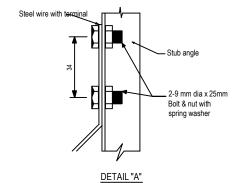

FOR TENDER PURPOSE ONLY


PROJECT:	KOHALPUR NEPALGUNJ 132kV TRANSMISSION LINE PROJECT
DRAWING TITLE :	TOWER GROUNDING
DRAWING NO.:	DWG008
SCALE:	NTS


ONE WIRE CONTINUOUS COUNTERPOISE CONNECTION



RADIAL COUNTERPOISE CONNECTION



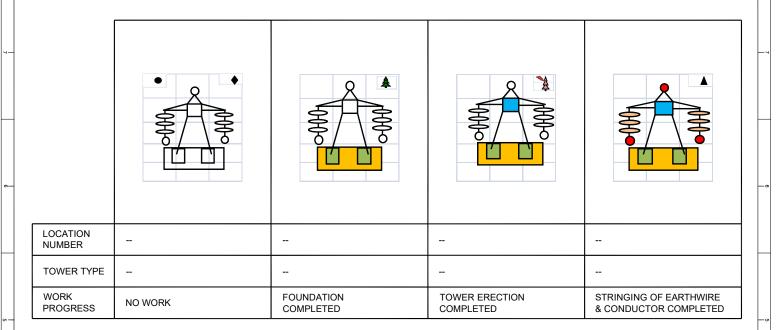
GROUND CONNECTION FOR PAD TYPE FOUNDATION

COUNTERPOISE SET

Legend	DESCRIPTION	Ref. Dwg.
1	2-12 mm dia x 25mm galv.steel bolt & nut with	
	spring washer.	
2	Galv. steel wire, 7 x 3.048 mm dia.	
	a. Radial counterpoise ; 50 meter long.	

NOTE

- 1. Dimensions are in millimeters except otherwise specified
- All grounding material shall have galvanizing weight of not less than specified in ASTM A 123+30%.

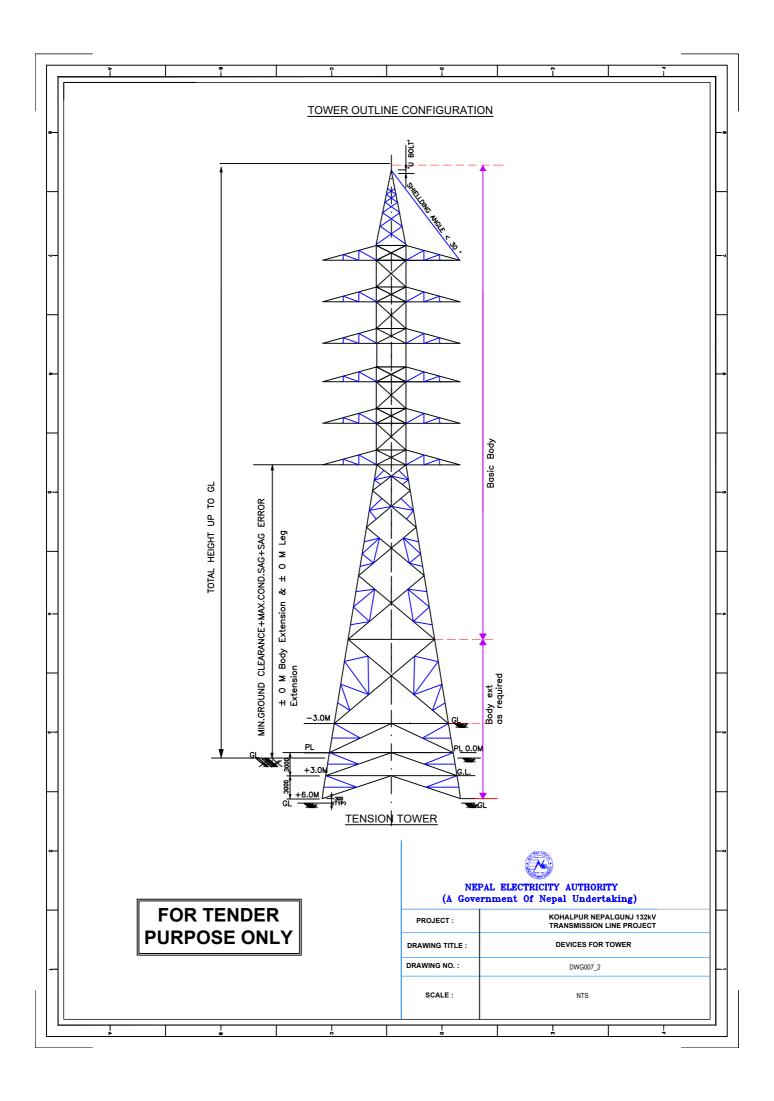

FOR TENDER PURPOSE ONLY

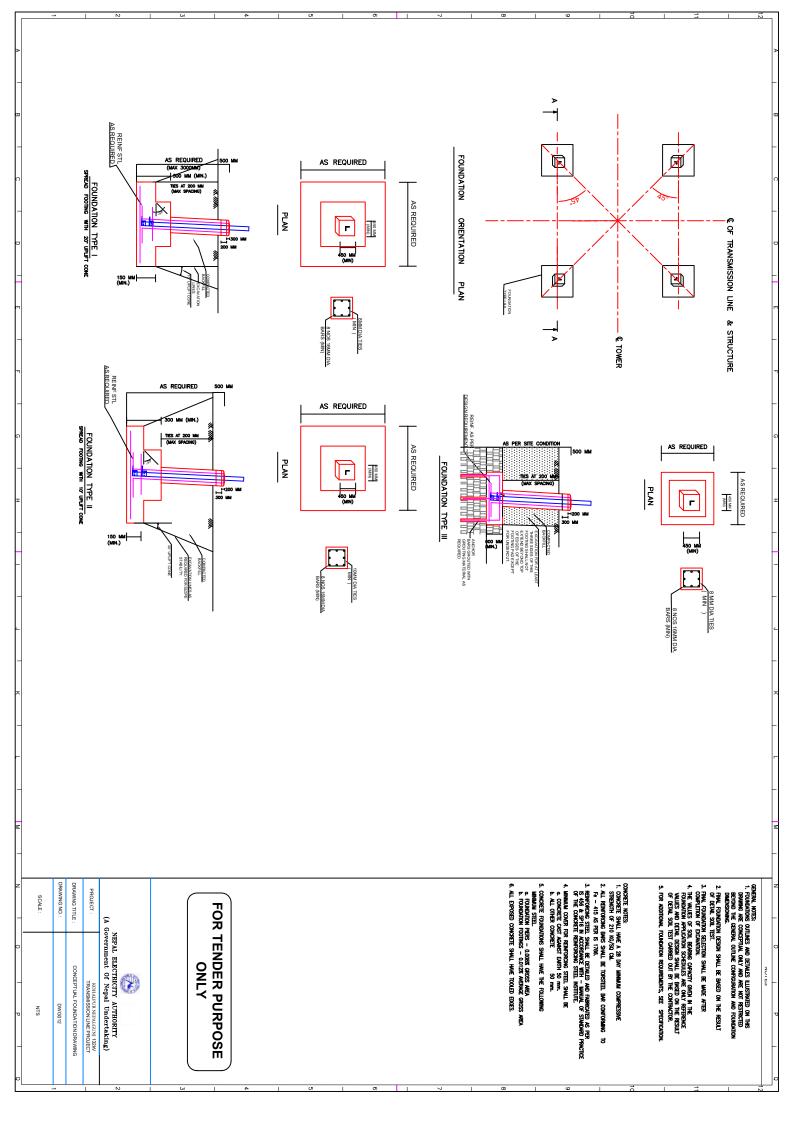
NEPAL ELECTRICITY AUTHORITY (A Government Of Nepal Undertaking)

PROJECT:	KOHALPUR NEPALGUNJ 132kV TRANSMISSION LINE PROJECT
DRAWING TITLE :	TOWER COUNTERPOISE CONNECTION
DRAWING NO.:	DWG009
SCALE:	NTS

SAMPLE VISUAL CHART

LEGEND:


•	RIVER CROSSING
	POWER LINE CROSSING
•	ROAD CROSSING
*	FOREST
*	TREE TO BE CLEARED


FOR TENDER PURPOSE ONLY

NEPAL ELECTRICITY AUTHORITY (A Government Of Nepal Undertaking)

`	• 57
PROJECT:	KOHALPUR NEPALGUNJ 132kV TRANSMISSION LINE PROJECT
DRAWING TITLE :	SAMPLE VISUAL CHART FOR 132kV TRANSMISSION LINE PROJECT
DRAWING NO. :	DWG010
SCALE :	NTS
	DRAWING TITLE : DRAWING NO. :

